
7 AA95 709 FORD AEROSPACE AND
COMMUNICATIONS CORP

NEWPORT EACH -ETC F/ 19/5
AUTONOMOUS ACQUISITION SIMULATOR AND ASSOCIATED DATA (AASAD)(U)
JAN 81 5 R KING. H MA CK, A W MATHE D AAK7 0-8O0-C-0235

UNCLASSIFIED NL

IIllllll llfl
IEIIEIIIIIIII
IIIIIIIIIIIIII
EIIIIIEIIIIIIEEEIIIIIIEIIIon
mhE!h.hhEmhE
llllllllllllJm

AUTONOMOUS ACQUISITION

7 SIMULATOR

AND ASSOCIATED DATA

I BY
S. R. KING J. R. BERCHTOLD

H. MACK K. R. TAYLOR

A. W. MATHE J. N. CAST
A. S. POLITOPOULOSI

I FORD AEROSPACE & COMMUNICATIONS CORPORATION
AERONUTRONIC DIVISION

I NEWPORT BEACH, CALIFORNIA 92663

1 JANUARY 15, 1981

I
First Quarterly Scientific & Technical ReportI for Period 30 September 1980 - 31 December 1980

I APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED D T IC

S I ELECTE
' ! MAR 3 1981

I Prepared for
S

U.S. ARMY MOBILITY EQUIPMENT D
• • RESEARCH AND DEVELOPMENT COMMAND

LJ.J NIGHT VISION AND ELECTRO-OPTICS LABORATORYI . FORT BELVOIR, VIRGINIA 22060

81 2 27 01

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
RBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVEREDI First Quarterly Scientific &AUTONOMOUS ACQUISITION SIMULATORAND ASSOCIATED DATA (AASAD)a rech, 9/30/80-12/31/80
6. PERFORMING ORG. REPORT NUMBER

SAUTHOR.s) 8. CONTRACT OR GRANT NUMBER(I

.J .Si"R. ng A. S.S litopoulos J. N. Cast --

SA. W./IMat he il<. -T .-Ta-
9. NIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & W"RK UNIT NUMBERS

Ford Aerospace & Communications Corporation , ,

Aeronutronic Divisionv
Newport Beach, California 92663

1..0OTRXLLING,?FF i NAMFAN9 ADDRESS 12. REPORT DATE
u.' rmy ODb ty hqulpment

Research & Development Command January ?16. 1980

Night Vision and Electro-Optics Laboratory 13. NUMBER OF PAGES
Fort Belvoir, Virginia 22060 168

14 MONITORING AGENCY NAME & ADDRESS(I diflerent trom Controlling Office) IS. SECURITY CLASS. (of this report)
Unclassified

IS. DECLASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release distribution unlimited

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)

18 SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessery and identify by block number)

digital video preprocessors target classification
intermediate high level language video signal processor
macrocode target cueing

- microcode target screening
FLIR target acquisition (Continued)

2, ABSTRACT (Contlinue on reverse side if necesa.ry end Identify by block number)

This report is the first quarterly scientific and technical report for the
Autonomous Acquisition Simulator And Associated Data. Contained herein is

* .. an introduction or executive overview of the AASAD system and an architecture
review of two systems studied and considered in the architectural design of
AASAD. This report also defines the programming structure and its relation-
ship with the hardware modules of the system. The Digital Video Preprocessors
are described and the planned activity for the contract second quarter period
is outlined.(

DD I 1473 rIION OF I NOV 6s IS OBSOLETE UNCLASSIFIED
"- SECURITY CLASSIFICATION OF THIS PAGE (When [)Ora Fnrre,:L : • * # ,~ ~~ ~ / .. ". . ,4 ':" " "" ''

/ -

.. 0. ... I i Ii ii- I I I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(mha, Date Engerod)

19. Key Words (Continued)

target tracking
target detection
VLSI
real time processor
image processing
image enhancement
target handoff
target extraction

Aooession.For

PTIS GUA&
DTIC TAB
Unannounced 0
JustificatiDTIC

By_ r- 1-ECDistribution/ LC

Availability Codes 1981
Avail and/or

Dist special

0L

4

4

1UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Enfeted)

-.. ,.,,.
"

- -

CONTENTS

SECTION PAGE

1 INTRODUCTION AND SUMMARY. 3

Introduction............................3

Summary..............................8

2 ALGORITHMS. 10

introduction and Summary 10

System Architecture Review. 10

Honeywell Approach (PATS) 10

Westinghouse Approach (Auto-Q). 15

Ford MVIPS/AASAD Approach 16

3 SOFTWARE 26

Architecture 26

Software Development 26

Software Support 28

Intermediate High Level Language (IHLL) 29

- Pascal Macros..........................29

.4 Micros...............................32

Operation of the System 32

4 HARDWARE 38

Digital Video Preprocessors (DVPP). 38

Sum/Difference and Threshold/Binarization DVPP 44

4Variable Averaging Mask DVPP. 49

Video Edge Detection Mask 52

A .Circuit Card Design.......................58

55 NEXT QUARTER ACTIVITY.......................63

ILLUSTRATIONS

FIGURE. PAGE

1 Simplified Block Diagram Autonomous Acquisition Simulator 6

2 PATS Functional Diagram.....................12

3 PATS Hardware 13 -

4 Westinghouse Auto-Q Digital Image Processor 17

5 Basic System Architecture....................19

6 Comparative Systems Review 25

7 AASAD Software.........................27 -

8 Intermediate High Level Language CIHLL). 30

9 Macro Development 31

10 Microcode Development 33

11 Initialize AASAD........................34

12 Execution of IHLL in AASAD 35

13 Digital Video Preprocessor Simplified Interface Block
Diagram 39

14 PPIM Interfaces 40

15 Address and Control Matrix 41

16 AOI Functional Logic......................43

17 Threshold and Binarization 46

18 Variable Averaging Mask.....................50

19 Examples of Video Masks.....................53

20 3 x 3 Mask Block Diagram 54

21 Video Mask...........................55

22 Video Edge Detection Mask Configuration 56

TABLES

TABLE PAGE

A1 Processors...........................28

2

.97

SECTION 1

INTRODUCTION AND SUMMARY

INTRODUCTION

This is the first Quarterly Scientific and Technical Report for the Auton-

omous Acquisition Simulator and Associated Data (AASAD), contract number

DAAK70-80-C-0235. This report covers the activity period of 30 September

1980 to 31 December 1980. The following introduction provides an overview

of the purpose and functionality of the simulator.

Imaging processing is an extremely difficult form of signal processing.

The operational environment varies greatly in background, temperature and

target physical characteristics, making target acquisition, tracking and

fire control a difficult task. Dependi-ng on the sensor utilized the number

of operations required in an image processing weapon system can vary anywhere

from one million to 800 million per second. Today's computers and even special

purpose processors were not designed to efficiently handle such extremes. A

special purpose processing system that is modular in hardware and software

can efficiently solve the image processing problems using existing algorithms

and provide the development system for new algorithms.

The benefits realized from an effective image processing system are many.

A dual mode missile combining radar for acquisition and image processing for

tracking and aimpointing is much more effective against moving or stationary

targets than a simple radar missile. In a high energy laser weapon system the

, .fine tracking and pointing accuracy gained from image processing is necessary

for the weapon to be effective. In an autonomous weapon system as required

on today's fighter aircraft the automatic acquisition, classification and

fire control functions place extreme loading and throughput requirements on

today's signal processors. A modularly expandable signal processor like

AASAD meets the needs of all three of these image processing weapon systems.

The AASAD hardware and software has been designed to meet the needs of image

processing systems today and be versatile enough to ensure anti-obsolescence.

- Modular hardware/software architectural approach has been used in other forms

of signal processing but AASAD is the first completely progrannable modular

image processor. The flexibility of the system allows it to efficiently

and in near real time, execute a wide range of image processing algorithms,

and be operationally changed for a completely different function simply by

j loading the new program.

3

The Autonomous Acquisition Simulator is a laboratory instrument designed

for image processing of video data (TV or FLIR) in the standard 525/875 lines

per frame format. The design objective of the simulator is to provide a

system using state-of-the-art hardware, operating at sufficiently high speed

and architecturally structured to achieve near real time operation with the
video data. Configuration of the system, resource allocation and the algorithms

performed are under program control and hence, the simulator can be completely

reprogrammed for vastly different algorithms in a matter of seconds with

no hardware changes required. The Autonomous Acquisition Simulator can be

programmed such that the classical "man-in-the-loop" is not required for

proper operational performance.

The Autonomous Acquisition Simulator can be used for performance testing of

image processing algorithms either in the laboratory or in some field testing

environments. The simulator is packaged to operate in the environment experi-

enced in the OH-6, Model 500P helicopter and as such requires a primary power

source of DC voltage.

The system has been designed to maximize the ease of programming, capabili-

ties expansion and operation. Both the hardware and software are designed and

developed on a modular basis. Some of the simulators salient features are:

* Unique modular Digital Video Preprocessors that implement dedicated

software controllable image processing functions in real time and

may be easily expanded to include additional dedicated preprocessors.

* Unique modular high speed digital microprocessor that uses pipelining

and parallel processing for expansion from speeds of fifteen to several

hundred million operations per second (MOPS) to meet real time pro-

cessing requirements.

* Flexibility of programmable or software controllable processors dis-

tributed throughout the simulator.

* Pascal based Intermediate High Level Language for the generation

of new application programs.

* Modularly expandable system architecture to meet real time processing

requirements for future applications.

•Open ended Macro and Micro library.

.4 •Serial and parallel data input and output.

* Input data sample rate up to 25MHZ.

The AASAD system is packaged in a twenty-five card-slot chassis. The

basic configuration uses nineteen cards. The remaining six slots have four

4F4 t,
:.

r

dedicated to specific options (additional arithmetic processor (1), Control

Processor memory (1) and Digital Video Preprocessors (2)) and two are available

for user selected options.

The system provides the following interface capabilities:

* One video input and two video outputs.

o Two RS232 serial communications interfaces and one MIL-STD-1553A

interface.

* One digital parallel interface with 16 address, 16 data and 3 control

lines.

e One discrete flags interface with eight input and eight output lines.

The major functional elements of the Autonomous Acquisition Simulator

and Associated Data (AASAD) system are shown diagramatically in Figure 1.

The general characteristics of each functional area are:

(1) Program Interface. The program interface contains two distinct

functional modules. The first modulL is the Program Loader Module

which interfaces the host computer to the second module, the Pro-

gram Transport Module. The Program Transport Module contains non-

volatile memory in which the programs, to be executed in the AASAD

system, are temporarily stored. The AASAD system can be reprogrammed

offsite via the Program Transport Module.

(2) System Controller. This function is performed by the LSI 11/23

microcomputer. The System Controller provides the basic operating

system, utilities, executive, intermediate high level language,

and the application programs. The System Controller down loads the

functional tasks to all the microprocessors and program controlled

function modules in the AASAD system through the Control Processor.

The System Controller also performs the basic math functions that

require floating point operations.

(3) Control Processor. The Control Processor's operational software

links the Micro library to the System Controller generated

Macros for execution by the functional elements of the AASAD system.
The Control Processor provides direct control over the programmable

'4 elements of the AASAD system and does so at the field rate. It

allocates the resources required by the operation or algorithm

specified by the System Controller. This processor/controller,

like the others in the AASAD system, is designed as a high speed

microprocessor..1 5

444

0

u
ca

LO

0

414

ze-

0'
co

k4u

44

-H

- Al-

(4) Memory Subsystem. The memory subsystem consists of two multiport

controllets and four frame memory cards. All access to and from

the frame memories is through the high speed port controller and

the low speed port controller. The frame memory cards are equipped

with 256K bytes each and have expansion options to increase their

capacity to 500K bytes or one megabyte.

(5) High Speed Digital Microprocessor. This subsection performs the

high speed arithmetic operations required by various image process-

ing algorithms. Each microprocessor is designed to use one to four

parallel arithmetic elements to provide operational speeds up to

60 million operations per second (MOPS). One arithmetic element

is supplied with the AASAD system and one card slot is dedicated

for optional arithmetic elements.

(6) Video Input. This subsection accepts the analog video signal and

separates the video data from the synchronization signals. The

source of this data may be camera, sensor or magnetic tape. The

video data is converted to digital values at data (pixel) rates

up to 25MHZ. The data format accommodated is standard 525 or 875

lines per frame standard TV video.

(7) Video Output/Graphics Controller. The video output section can

supply both 525 or 875 lines per frame analog video to one or two

monitors. The Graphics Controller generates both symbols and text

characters (full ASCII code set) at image locations specified by

the Configuration Controller and overlays the symbols/text on the

displayed image.

(8) Video Preprocessors. The preprocessors are program controlled

by the Configuration Controller and provide the "on-line" or near

real time operations on the data supplied by the video input or

from frame memory or both. The Video Preprocessors are designed

with very high speed ECL logic elements to facilitate the 25 MHZ

data rate of the Video Input section. Four preprocessor functions

are provided with the AASAD system; Variable Averaging Mask, Video

Edge Detection Mask, Sum/Difference and Threshold/Binarization.

(9) System Control Panel. This function allows the operator to interact

with some system operations such as symbol generation and placement,

alteration of certain memory locations in the controller/processorI
elements, etc. The control panel is also designed with a micropro-

I7

cessor which enhances its flexibility and synergistic capabilities

with the AASAD system. The control panel will be used in the ini-

tialization and testing phases of operation and the operational

mode of some algorithms.

For a more detailed description of the operational capabilities of these

functional modules/subsections please refer to the appendix of this report.

SUMMARY

This report contains five sections and one appendix and, with the exception

of the appendix, establishes the format for the following quarterly reports.

Since this is the first report and covers the program initialization phase

the technical accomplishments are not advanced to the level that provides

significant scientific and technical details. Section 2 Algorithms, describes

the "system trades" considered in the definition of the AASAD architecture.

Specifically this study identified the Digital Video Preprocessor function

which allows near real time execution of certain algorithms frequently used

in image processing. The distributed microprocessor design to provide program

control at each functional level was selected as a result of the study when

other systems were evaluated as "difficult to alter their mission objectives."

Section 3 Software, defines the programming architecture and relates each

program with the specific hardware that executes the program. Programming

development uses "Top Down Structure" and utilizes a Pascal version for the

Intermediate High Level Language (IHLL). The algorithm programs utilize an

open ended library of macros and micros to formulate the desired operations.

Section 4 Hardware, details the functional design and operational character-

istics for the Digital Video Preprocessors:

e Sum/Difference and Threshold/Binarization

* Variable Averaging Mask

o Video Edge Detection Mask

These modules are presently undergoing system integration testing in the

FACC Modular Video Image Processing System (MVIPS).

Also an analysis of the circuit card selected for use in the AASAD system

is presented. The use of Multiwire (i) provides AASAD with the electrical

(1) Multiwire (D is a registered tradename for Kollmorgen Corporation's discrete

wired circuit boards.

15'

.M4

properties necessary for the high speed ECL logic and for the weight, size

and vibrational operation of the AASAD system in helicopters of the OH-6,

Model 500P type.

Section 5 provides a "snapshot" of the activities that will be performed

during the next report period, 1 January 1981 to 31 March 1981.

99

I

1 9II II I IIm ..n..m n [-nn lll ' L

SECTION 2

ALGORITHMS

INTRODUCTION AND SUMMARY

This summarizes the results of system architectural trades that were

made of two existing auto-cueing systems prior to finalizing the design of

the AASAD system. The Honeywell Prototype Automatic Target Screener (PATS)

and the Westinghouse Auto-Q Digital Processor are the two systems that were

selected for this trade study. Some other architectures were considered and

studied during this phase of the program, but the results are not reported

here.

The approach to performing the trade study was the review of each system

in terms of its ability to meet the requirements for implementing some of

the existing algorithms for autonomous acquisition, i.e. computational speed,

memory, etc. Consideration was also given to the flexibility or ease with

which algorithms could be modified or new algorithms implemented on the

systems.

The results of this study are reported in the following subsection by

first reviewing the basic computational requirements for some well known

autonomous acquisition algorithms. From these requirements, evaluation

criteria were developed as a basis of comparison. The two selected systems

along with the architecture of the AASAD system are then described in the

context of these criteria. The results are summarized in tabular form at

the end of this section.

SYSTEM ARCHITECTURE REVIEW

The Section examines the architectures of several image processing systems

currently in existence for target detection and Auto-Cueing Applications. Spe-

cifically, it will concentrate on the real time aspects of implementing image

processing algorithms and their implications on hardware and software systems.

The three system architectures being examined here are the Westinghouse AUTO-Q --

system, the Honeywell PATS system and the Ford Aerospace MVIPS/ AASAD system.

Honeywell Approach (PATS)

(Reference: SPIE Proceedings "SMART Sensors" April 1979 page 125)

The Prototype Automatic Target Screener System (PATS) was developed by

the Honeywell Corp. to perform automatic real time detection, classification,

recognition, and cueing of tactical targets. Both analog and digital hardware

are used to perform these major functions.

'1 10

-III I I 'mr ~~~~~ ~ ~~~.. ... ".- -' ..&

The hardware consists of twenty-two 6" x 9" boards and fits into a box

slightly larger than an ATR box and has a power consumption of approximately

200 watts. Charge-coupled devices are used for performing image segmentation

and a bit-slice microprogrammable digital processor (AMD 2903) is used to

implement a target classification algorithm. The PATS system accepts 525 and

875 line TV formats and performs target classification and detection at a rate

of 10 frames/second. The results of these tasks are conveyed to the operator

by means of symbology overlaid on the TV display.

The functions performed by the PATS system on the incoming video data

are shown in Figure 2. The image enhancement function consists of adaptive

contrast-enhancement, DC restoration and automatic global gain and bias control

and is implemented in analog hardware using CCD devices. Adaptive contrast

enhancement circuitry enhances local variations of contrast and compresses

the overall scene dynamic range to match that of the display. DC restoration

eliminates streaking due to loss of correlation between lines because of

the AC coupling of the detector channels. The automatic global gain and

bias controls provide feedback signals to the FUR device to maintain signal

within the range of the E.O. multiplexer.

Target detection and classification consists of functions to detect targets

and classify them into one of the five classes: 1) 2-1/2 ton truck, 2) tank,

3) APC, 4) track mounted radar-controlled anti-aircraft and 5) track mounted

anti-aircraft missile launcher. These functions are realized using both

analog and digital circuitry.

The hardware of PATS is shown in Figure 3. The first module performs

sync stripping and video switching. From the composite sync signal derived

from the incoming video, basic sync signals such as vertical reset, field

indicator and horizontal sync are derived. The module switches the video

to the monitor which can be either raw video, enhanced video, analog test

signals or digital test signals. Also, the video to the rest of the system

can be either raw or enhanced video. The module also contains circuitry

to generate two clock signals -- a 455 clock for CCD devices and a 512 clock

for the digital hardware -- synchronized with the incoming video. With 875

line format, there will be 512 or 455 samples per 32 pseconds whereas with

525 line format, the same number of samples will be obtained every 53 jseconds.

The image enhancement module performs DC restoration, global gain and

bias control, and adaptive contrast enhancement using CCDs, a microprocessor,

and MSI/LSI standard components.

.' 1

'71

ui 0

4WL

00

zz
21 cc a
R -
LLC

LU IL
0I-u.

te E R

z L*

cc U. w 4

U. W LL-

C-

4C

2 a .1-1

z

W,6

12'

-reC

w -

00

z
0 0.

j 3 >

LU - I-

x M I 0 0 Cn,

LL, U X -j LU c oCC -LU C

4cx
LL 41a

Ii1
.j.

The feature extraction hardware consists of two hardware limits, one for

autothresholding and the other for generating intervals on a line-by-line

basis which contain profiles of potential targets. The autothresholding unit

generates two thresholds, one based on edge information and the other on back-

ground intensity. Based on these two thresholds, the unit generates "hot" or

"cold" signals when the intensity exceeds or does not exceed background, and

true or false signals indicating presence or absence of an edge at a given

location. The thresholds are computed based on the previous and current lines.

For the background threshold, a two-dimensional low-pass recursive filter is

used to estimate the background average. After subtracting the background

estimate from the video, the threshold is computed using the variance of the

resulting video and a predetermined multiplication factor. The edge threshold

computation is similar except that an edge filter is used to estimate the

average edge intensities. The edge signal is computed using the following

equation:

E(n,R) = l(n + I, k) + l(n, k) - 21(n-l, k) -I(n + I, k-I)

+ 21(n, R-1) - l(n -1, k-l)

where n and k are the scan line number and pixel position, respectively.

The digital signals (edge, hot/cold) from the autothresholding unit are

passed to the interval hardware unit which generates valid intervals based

upon previous, present, and next scan line edge/no edge, hot/cold signals.

The interval unit also produces several first-level feature data stored in

batches such as the line number, number of intervals for the line, starting

position and width of intervals, background and intensity information asso-

ciated with each interval, edge coincidence information for each interval,

and indication whether the interval is "hot" or "cold".

The data from the interval generator unit is passed to the data memory

which is part of the subsystem CPUI. The data memory can hold up to 2500

sets of interval data and a maximum of 21 intervals per line. The CPUI, built

wl'h AMD 2900 components, has a high speed 16 x 16 bit multiplier and is inter-

faced with a DEC LSI 11/2 and various memories (Figure 3). The DEC LSI 11/2

system is not used during the actual operating mode and is primarily used for

training the PATS system.

Both CPUI and CPU2 are interfaced to the symbol generation hardware which

generates symbols with programmable size and shape. The A/D converter shown

in Figure 3 contains two TRW A/D 8-bit converter chips which are used to deter-

mine the digital value of the background estimate at the beginning of each C'

<1 14kiL__

interval, and digitize the entire video frame for storage in the full frame

memory. A 12-bit adder is provided in the converter block which performs

summation of intensities over the entire interval. The eight most significant

bits are transferred to the CPUI for processing. The full frame memory con-

sists of eight 16K x I dynamic RAMS with access time of 375 ns and can be

randomly accessed by CPU1 for calculations necessary for target recognition

and classification.

The CPUI performs several functions through software on the interval data

generated by the interval unit. It combines the one-dimensional intervals

into sets of connected intervals characterizing two-dimensional objects. It

performs a one-dimensional median filter of width five on a line-by-line basis

to smooth intervals and computes object features in an hierarchial manner. In

the hierarchical process of feature computation, it eliminates clutter in ini-

tial stages and computes moment features for potential targets. The objects

are classified using a k-nearest neighbor rule and the moment features into

one of five categories. The processor CPUI stores the result of the classifica-

tion along with the object size and location so that this data can be further

processed by CPU2 for interframe analysis. The interframe analysis consists

of consistent object association between frames and application of Bayes'

rule for object classification. CUP2 also performs symbol generation.

To conclude the architectural description of the PATS system, we note

the ingenious manner of analog and digital division as well as hardware and

software division to perform a given set of image processing tasks in real

time. However, the main limitation is that it performs a restricted type

of auto-detection and requires a total redesign of hardware and software

to perform a different type of image processing algorithms (such as a double

gate size contrast filter or a Sobel edge filter).

Also, the processing speed of the system is degraded as more targets are

detected and cued by the system. Another possible problem or inconvenience

with this system is the difficulty of obtaining intermediate results from

the interior elements when the unit is processing. Having this feature would

greatly facilitate debugging and checkout of system malfunctions.

Auto-Q Digital Image Processor (Westinghouse Corp.)

* (Reference: 1980 NAECON Proceedings, Vol 1, pages 102-107)

The Auto-Q digital image processor was developed by Westinghouse to

extract key image features from FLIR video data for target classification4I or for image registration (scene matching) in hand-off applications.

15

.i

Details of the Auto-Q system are shown in Figure 4. It accepts data in

either 525 or 875 line formats and processes at a rate of six fields per

second for 525 line formats and three fields per second for 875 line formats.

The Preprocessor (Figure 4) is under software control and its configuration

can be changed frame to frame. It can perform averaging, median filtering,

level slicing (at two levels) and rate compression by selection of alternate

pixels. After these preliminary pixel operations, a Roberts Cross Operator

is performed on two-by-two pixel arrays to obtain gradient information. Pixels

with gradient amplitudes greater than an adaptively selected threshold are

marked and further processed by the maximize function.

The maximize function thins the gradient data into thin lines of the target

by comparing neighboring gradient values for all pixels. The blob tracker

attempts to find a closed boundary by tracking left and right outlines. The

blob is detected when left and right outlines meet, and the geometric features

of the blob are computed and stored during the blob tracking process. The

segment tracker connects pixels with compatible features defining the end

points and gradient direction of image edges.

Group formation is handled by dedicated hardware which collects all edges

associated with each target or object. It accomplishes this function by

looking at the identifying tags attached to both blobs and edges as they

are generated. After the group formation, the data is passed to a general

purpose computer (AN/AYK-15A) which extracts targets and performs various

other functions as indicated in Figure 4. These functions include frame-

to-frame integration, feature computation, statistical decision making, feature

matching for handoff, target prioritization and target classification.

The Auto-Q prototype model fits in a standard ATR chassis and has an AC

power consumption of 450 watts.

In contrast with the Honeywell PATS system, Westinghouse uses a general

purpose computer to implement a majority of the image processing tasks required

for target classification and handoff. Although this increases the system

flexibility, it may cause a reduction in real time processing rate.

Ford MVIPS/AASAD Approach

The basic goal of the Ford MVIPS/AASAD system is to develop a very high

speed, digitally orientated, software programmable, real time image processing

system that provides the capability to execute, in real or near real time, a

wide range of complex image processing algorithms used for autonomous tactical

target acquisition applications.

16

El

U)

0
2.4

C-Z-

C. 5-E

~c u

2 00

C [1F17

i L
The basic architecture chosen for this system, which is shown in Figure 5, fT

contains a series of parallel pipelined digital processing units as the central

processing elements. These elements are lesigned in a modular form such that

additional units can be added to meet the more demanding requirements of some

of the complex image processing algorithms it will be required to process.

One of the basic concepts of Ford's MVIPS/AASAD system is that the majority

of the hardware units are software programmable from a high level, user orien-

tated, language. This gives the system the computational power of other systems

along with tihe added feature of software flexibility for ease of algorithm

testing and validation.

The following section discusses some of the important features of the

MVIP/AASAD system architecture.

Video I/O Peperocessor

The MVIP/AASAD system will accept raw input video in either 525 or 825

line TV format. This input video is then fed to a digital preprocessor which

has a sync stripper, line drop computation and a D/A converter capable of

converting video at a 25 MHz rate, at 8-bits per sample.

The video preprocessor has several additional features (built into the

processor) that are software selectable and will perform real titme image

processing functions.

The unit can perform real time video field summation and subtraction, it
can also perform a real time edge detection by executing various selectable

operator masks such as Laplacian, Roberts and Sobel. A Variable Averaging

Mask feature is available that will output the average pixel value from a

selectable size window processed over an entire video field in real time.

Finally, a threshold and binarization function is provided that takes pre-

selected threshold values and outputs video pixel values of either 1, 0,

or the actual pixel value based on threshold settings.

High Speed Digital Video Processing

The Ford MVIPS/AASAD system contains a High Speed Digital microprocessor

(HSDM) device that is designed to perform the more complex algo-

rithms that are required for autonomous acquisition and classification

scenarios.

This unit is designed to operate independent of the video preprocessor

,id will process data in a parallel pipelined mode to provide a very high [
data throughput which is usually required for complex algorithm processing.

18r

.-

LU0)

LU 0

0 .61

CO

0 x)

>II

I 'c

* I ~19

This unit is also software programmable and can perform such algorithmic

functions as:

* 2-D recursive and nonrecursive filters

eMatched filters

" Feature matching

* Super slice technique

" Target segmentation 04

" Target classification

" Statistical

* Syntactical

* Multi mode tracking

* Centroid

* Correlation

* Feature

e Others

at real or near real time rates.

The HSDM unit contains a bit sliced device called the Pipelined Arithmetic

Processor and is capable of processing video data at a rate of approximately

15 MOPS. It is interfaced to a video frame memory which stores input data

from the video preprocessor and has a maximum capacity of 1 Mbytes per frame

with four frames supplied.

The PAP units are controlled by the Control Processor unit which handles

the general program flow and communicates with the PAPs at the micro instruction

level.

The overall system data flow is handled by the System Controller. This

device is actually a general purpose digital computer (LSI 11/23) and contains

the system operating software. The unit is the basic interface to the user

thru the control panel and the host computer or program loader. The following

items are a few of the functions this unit will perform:

* Overall System Control

e High level language user interface

o Provide floating point computation

-4 * Operating System Software

* Compilers

* Assembliers

e Utilities A

* Provide external signals for servo loop control

r

Ford MVIPS/AASAD Processing Concept

Since the Ford MVIPS/AASAD Architecture is almost entirely software pro-

grammable, the type of processing that is performed depends primarily on the

nature and type of algorithm being implemented.

Thus, Honeywell's detection algorithm 'A' can be coupled with a Westing-

house classification algorithm 'B', along with a new tracking algorithm from

source 'C' can be combined to determine if that configuration of algorithms

is a suitable solution to a particular auto-cueing problem.

The basic concept of the Ford architecture is flexibility without a sacri-

fice in processing time and accuracy. User orientated software is also another

keystone of this system.

Having a set of high level macro language calls (PASCAL) that are converted

into micro instructions by the software complier and are executed as micro

code in the HSDM, provides the user with the capability to program and examine

the performance of a wide range of algorithms with a minimum amount of effort.

The development of the MVIPS/AASAD system used the following basic require-

ments for the design objectives of the hardware architecture and the structure

of the operational software.

1/0 Requirements

MVIPS must be capable of accepting analog data in TV format with provisions

for eventual upgrading toward acceptance of other image data format. In

addition, it should be capable of accepting both digital parallel data and

digital serial communications data.

Digitized input data, intermediate results and final processed results

should be capable of transfer to TV monitors, other computers (such as Navi-

. gation or Mission computers and Digital Servo Controller) and status indicators.

Preprocessing Requirements

MVIPS must be capable of executing a variety of preprocessing functions

on the incoming imagery data. These include, image enhancement algorithms

4such as local area gain brightness control, and edge detection, noise smoothing

'4 through averaging, median and general recursive and nonrecursive filtering

and sensor dependent processing aimed at correction of sensor related defi-

ciencies such as auto-focus control, scan jitter elimination and detector

array compensation.

The preprocessing functions a-e to be implemented for application over a

complete frame of data. For man-in-the-Loop systems the preprocessing func-

tions perform the necessary visual display improvements to enhance operator

21

effectiveness. For autoscreening/cueing systems the preprocessing functions

are algorithm dependent but they also include the sensor associated processing.

Detection-Extraction Requirements

Given a frame of imagery MVIPS must be capable of scanning the scene on

a pixel by pixel basis with any one of a variety of detection masks whose pur-

pose is to isolate in the Field Of View (FOV) "target-like" areas or "areas-

of-interest" that indicate the possible presence of a target object. The

masks are under continuous evolution by different industrial and academic

research organizations and thus MVIPS must not restrict the design to a spe-

cific approach. Instead it must allow sufficient flexibility to accommodate

the existing approaches with additional consideration given to inevitable

modifications.

Detection masks can assume a variety of forms implying both arithmetic

and logical operations on the underlying image data covered by the mask.

Operations such as thresholding, edge calculations, statistical parameter

evaluations (mean, standard deviation etc.) histograms and logical interpixel

comparisons must be within the MVIPS design framework. In addition. it must

be possible to implement these different operations on different subsets of

the pixels encompassed by the mask.

The fundamental goal of the detection phase is the localization of "areas-

of-interest" which have sufficient characteristics to be potentially target

objects. This ultimate characterization will be accomplished by the more

sophisticated classifier algorithms. Hence, the detection phase must be

viewed as a preprocessing phase which is designed to reject as much "clutter"

as possible while retaining within its responses a subset of the scene elements

containing possible target objects. In this sense, the detection algorithm

designers strive to imbed within the detection mask characteristics, sufficient

mathematical structure to capture the essential target discriminating properties

but with a view toward keeping the arithmetic details to a minimum sc that

realistic execution times become feasible.

The detection masks can be of variable size to accommodate range dependent

target size variations. In the limit, the whole scene may become the mask

size. MVIPS must be able to adapt to these changes. That is, it must be

possible to change the mask definition on a pixel by pixel basis during a

scan across the FOV.

Proper performance of classifier algorithms require a clear definition of

the localized object's geometric profile. Hence, for detection schemes which

22

t..A

do not clearly delineate the possible target object, there is a need for a

second operational phase whose purpose is to extract the detected object from

its surrounding background. MVIPS must be capable of accommodating such an

extraction capability through operations, on a scene pixel subset, that include

histograms, edge operations, statistical calculations, thresholding at one or

more levels and logical comparisons.

Classification Requirements

Given a localized object and extracted from its immediately surrounding

background object, MVIPS must be capable of implementing a host of classifi-

cation algorithms whose purpose is the identification of the object under

test. These are the algorithms that will finally ascertain the identity of

the test object, i.e., is it a tank, an APC, a truck etc. or clutter.

Typically classification methodologies for autoscreening/cueing systems

involve two phases. One, single computer processing which utilizes easily

calculable object features such as the length, width, area, perimeter,

straightness of sides etc. that provides a coarse prescreening mechanism

for rejection of obvious clutter. The second phase uses more elaborate

mathematical and logic operations to ascertain the object's identification.

These operations may include moment calculations, Fourier or other (Walsh,

Haar) transforms, logical neighborhood processing and other mathematical

shape and/or intensity profile descriptors. The result is a feature vector

w hich succinctly summarizes the object's geometiic and/or radiation profile.

The feature vector is then utilized either directly against predetermined

threshold boundaries or more often in a table look-up operation against a

prestored set of feature vectors representing known targets. The matching

process would be either a correlation or a mean square difference criterion.

MVIPS must be capable of accomplishing the above described tasks with

enough expansion capability to avoid system slowdown as the number of objects

under classificatin increases.

Tracking Requirements

MVIPS must be capable of implementing the traditional and new proposed

approaches to the target tracking problem. It should be capable of executing

centroid and correlation tracking algorithms with variable size tracking gates.

In addition, noise smoothing and thresholding operations may be necessary to

enhance jitter-free tracking behavior.

The last few years have seen a steady amplification of the classic tracking

methodologies to encompass mort general considerations that allow continuous

J 23

4.

object tracking under more adverse operational scenario conditions. Algorithms

for accommodating target obscuration and/or variable background conditions are

now under development and MVIPS must be capable of incorporating them. The

architectural implications of these approaches dictate that MVIPS be capable

of multiple gate placement across the FOV with the algorithmic considerations

possibly different for each gate. Thus, in addition to tracking the main

object, MVIPS must be able to implement signature prediction for the anticipated

object occupancy of areas preceding and adjacent to the tracked trajectory.

Targe t-Handover Requiremen ts

MVIPS must be capable of accommodating the I/O and algorithmic requirements

necessary to accomplish effective target-handoff from a primary sensor to a

secondary one located on a weapon such as the Maverick missile. In effect,

MVIPS must be capable of executing the target recognition function on the

primary sensor data and a scene matching operation between the primary sensor

scene and the weapon imagery.

The scene matching algorithms can range from a direct correlation search

iatch to a syntactic association of segmented objects in both scenes. The

fundamental considerations are no different, in principle, than those encoun-

tered in the basic target detection and classification requirements. However,

the handover problem dictates multiframe storage capability and simultaneous

execution of the target recognition, target tracking and scene matching

algorithmic logic.

Arithmetic Computation Requirements

MVIPS must be capable of performing a variety of mathematical computations

encountered in navigation and weapon delivery functions. These are basically

matrix-vector operations such as state propagation, Kalman filtering and

numerical integration of differential equations.

Input data can originate from a variety of sensors such as Inertial Navi-

gation Systems, radar, air-daa computers, altimeters etc. in addition to

imagery data.

4 Figure 6 provides a brief features summary comparison of the

Honeywell (PATS), Westinghouse (Auto-Q) and Ford (MVIPS/AASAD) systems.

9

i 24

I II I I I II ~ ~~~a - m ,,u-.

1-4 (n

0 "1 A ~ M V) a4-"Y: E-

V)(Z-4 5)W0 -

0* [6 0 W Z X S.

Z0 Z. WH E-
(a4- 14

E-4.~ I-4w" u -: H 4

~~H0~~LF- 0 P 4:- 0 -(

zz

I-) C/)Z ca wa E-44
u (a0 " wl Cd6- uE- 0 0L - - c 4 U

L) 0~~- w 4 -

=a C4 L-E 0 (a . .a E4 E4
a. :0. (a W4 -4 E-4

(a Qa) < O-4 0pE PQ U U

Cl) Z (a-4 k~ 0 0 0(a -< Z

cn = M~~0~ (a0 a 4 QE4>E

-4 0U M E4 U
0 4 0 0- C) " l)"U)>a Cle :a H(a) 4

w 04u 0 0 0 (ap
4-4 -4 >- M -4 CN) 14

0- . AP (00 P0 wa C4 -..

-4~9 -- 4 E- H- - 4: (4 ~
w WE~E~ cn C W ;w-4a (n H0- Z u (

00C)- m . W u : 0E4 3VU) E4>E-

0> 0400 0 00

f ua

0l C.)
zz wl

0nw u0wc VJ) "
w ~ 0 zx

uI- 0 z 4Z14z0c q

z F-I 0 F~~~H-4 ' 4 4E lq _ _ _ _ _ _ __w ",4 w -
(n ~ ~ ~ ~ ~ ~ ~ & 4'- -F4zwx qF

w Ln Ln z9 - Ln w L) 25

cz w - c I t
" u r 1 r ~

II

SECTION 3

SOFTWARE

ARCHITECTURE

All of the AASAD software is designed with high flexibility and ease of

use with the algorithms and resource control in the Intermediate High Level

Language (IHLL). The software is easily expanded by generating additional

Macros and Micros for inclusion in the libraries. Maintenance of the system

is reduced by having all of rhe software in smaLl modular routines. The

system utilizes a Pascal based Intermediate High Level Language that is resi-

dent in tile System Controller. The IHLL allows the user to program the AASAD

system in a high level language which is much easier than programming at the

macro and micro level. Through the use of IHLL, a user is able to control

the serial and parallel functions of AASAD.

AASAD is user oriented and allows the user to control particular algorith-

metic functions within the individual processors or to operate on complex

algorithms. The algorithms are generated in the IHLL and loaded into the

System Controller.

The System Controller generates control block lists which are transferred 7'

to the Control Processor. The Control Processor directs the configuration con-

troller, Graphics Controller and High Speed Digital Microprocessor as shown in

Figure 7. It can thus be seen that AASAD is a list driven distributive pro-

cessing system. The relationship between the software and hardware is also

shown in Figure 7.

Based upon the function to be performed, various microcomputers and pro-

cessor of various word sizes are utilized as shown in Table 1.

SOFTWARE DEVELOPMENT

At FACC, all AASAD software is developed on the VAX 11/780 or the PDP 11/23.

Both computer systems are part of the Digital Systems Department Image Pro-

cessing Laboratory. The PDP 11/23 is essentially the same computer as the

LSI 11/23 (the System Controller). The PDP 11/23 has additional peripherals

4(disk, Decwriter, etc) that allow FACC to use it as a software and hardware

development computer. The VAX 11/780 is a large minicomputer with 3 megabytes

of memory, modems, display terminals, line printer and 400 megabytes of disk

storage. The computer system is used as a multiple user work station allowing

the users to develop IHLL, Macros and Microcode simultaneously.

26

/ ' *..
°

•.._

PROGRAM
O S-LIFRANSPORTI .ASSEMBLY-Os -RXlJ

MO4DULEI .DIAGNOSTICS VHS
168021 FACC APPL, PASCAL

- ASSEMBLY
VAX 11/780 FORTRAN

.ASML SUPP - ICTA-ASSEMBLER

LOADER DIAGNOSTICSDIGOTC

680 0 - RSX-11M
NVL APPL, - PASCAL

PDP 1/70ASSEMBLY
PDP 1/70SUPP - META-ASSEMBLER

CONTROL .ASSEMBLY 0
PANEL .DIAGNOSTICS

6802

SYSEMOS - RSX-jjM
SYSTEMRSX- 1S

CONTROLLER APPL, - PASCAL
LSI 11/23 ASSEMBLY

6802 ASSEMBLY
1553 SUFF - DIAGNOSTICS

DEBUGGERS

OS - FACC DEVELOPED

CONTROL APPL - ASSEMBLY
PROCESSOR SUPP - DIAGNOSTICS

I IT DEBUGGERS

CONFIGURATION -MICROCODE
CONTROLLER .DIAGNOSTICS

48 BI HIGHSPEE MICROCODE
DIGITALDIAGNOSTICS

GRAPHICS MICROCODE
CONTROLLER DIAGNOSTICS

48BI

Figure 7. AASAD software

If 27

TABLE I. PROCESSORS _

Word Size

" Motorola MC6802 8

- Microprocessor

- Program Transport Module

- Program Loader

- Control Panel

- 1533 Interface to LSI 11/23

" VAX 11/780 (Compatibility Mode) 32 (16)

PDP 11/70 16

" Control Processor 16

" Configuration Controller 48

" Graphics Controller 48

" High Speed Digital Microprocessor 96

Both of the computers utilize the DEC RSX-IM operating system. In addition

to the usual support utilities supplied by DEC (compilers, assemblers, editors

etc), the Oregon Software Pascal and the Step Meta-Assembler are installed on

both of the computers. The Oregon Software PASCAL is used to develop the

IHLL and PASCAL Macros. The Meta-Assembler is used to generate the micro-

code for the Configuration Controller, Graphics Controller and High Speed

Digital Microprocessor.

All support software except for licensed software and the application

software (micro code) for AASAD is directly compatible with the NVL PDP 11/70

computer system without any modification.

SOFTWARE SUPPORT

FACC recognizes the need for good support tools and diagnostics and the

cost of developing these tools. Whenever possible, commercially available

software is utilized. For the VAX 11/780, FACC utilizes the full capability

of DEC supplied software tools and diagnostics. Additional purchased software

packages are a Fortran assembler for the Motorola MC6802, Step Engineering

Meta-Assembler and the Oregon Software Pascal Compiler. On the System Con-

troller (LSI 11/23), FACC is utilizing the DEC supplied RSX-1lS operating

system, diagnostics and utilities.

FACC is developing unique software tools only when required. Some of the

4tools and utilities include a software debug Control Panel program for the

28

Configuration Controller, Graphics Controller and HSDM. Through the System

Controller, the user is able to single step a program, change addresses and

set breakpoints. Also diagnostics are being developed for all of the pro-

cessors, memories and interfaces on AASAD. The diagnostic software is modular

in design, and written in PASCAL whenever possible. In addition to the

individual processor diagnostics, FACC is developing a system diagnostic

that allows a user to test and exercise the total system.

The hierarchy of the AASAD software is as follows:

" Intermediate High Level Language (IHLL)

e Pascal Macros

" Microcode

INTERMEDIATE HIGH LEVEL LANGUAGE (IHLL)

To ensure continued growth and expansion of the AASAD software, FACC has

simplified the implementation of algorithms and the software development process

by utilizing a Pascal based Intermediate High Level Language. Figure 8 shows

the typical software development process for the IHLL. The advantages of the

IHLL are as follows:

* User Oriented

* Intermixes with Oregon Software Pascal

* Allows transfer of data/results to and from the AASAD system

e User interface to the AASAD system

The IHLL is a user oriented version of the Oregon Software Pascal base.

The Pascal compiler is user oriented through the utilization of a selected

list of Pascal procedures. The IHLL is developed on the NVL PDP 11/70 or

FACC VAX 11/780. The IHLL will be executed in the System Controller of AASAD.

The development process will utilize Pascal generated macros that will utilize

selected micros to perform the algorithm defined by the macro. The macro

development process is depicted in Figure 9.

PASCAL MACROS

The macros are generated in relocatable Pascal and are executed as part of

the IHLL in the System Controller. The macros are the executable part of the

IHLL and the macros generate the control block lists that are transferred to

the Control Processor. As shown in Figure 9, all of Pascal routines are com-

bined together to form the Macro Library which is utilized by the IHLL. The

Pascal macros are developed on the PDP 11/70 or VAX 11/780.

29

$1 ~-

o -8

AA

04
soon

w cc-
-"0I

CYI

eI,

z .30

-
f

96 --.-

UIS4

Z)4 08

Z 031

MICROS

The algorithm microcode, generated in assembly language, utilizes absolute

addressing. Development of the microcode is also on the PDP 11/70 or VAX 11/780

and the execution of the microcode is in the following microcomputer:

9 Configuration Controller (46 bits)

e Graphics Controller (48 bits)

* High Speed Digital Microprocessor (96 bits)

The microcomputers process the image data and execute the algorithms as

commanded by the Control Processor. It is at the microcode level that the

AASAD system attains its near real time capability. The microcode development

process is shown in Figure 10. An example of a typical microcode routine is

shown in Figure 3-39 of the Appendix.

OPERATION OF THE SYSTEM

The AASAD software is developed on the PDP 11/70 or VAX 11/780 and loaded

into the AASAD system through the MIL-STD-1553A bus or the program transport

module as shown in Figures 8, 9, and 10. The executable software is then

loaded into the individual microcomputers memories as shown in Figure 11.

The operation of the AASAD system is shown in Figure 12. The system is

loaded and initialized by using the Program Transport Module or 1553A bus.

The System Controller executes the IHLL intermixed with standard Pascal. When

an IHLL instruction is executed, the System Controller executes the appropriate

Pascal macro which sets up the proper control block list or lists. The lists

are then transferred to the Control Processor. The Control Processor has a

two pass scheduler where the first pass fills in any parametric data need by

the control block lists. On the second pass, the scheduler will either execute

the list immediately by sending the list to the proper processor or queue the

list for execution when the processor is available.

The AASAD Executive, operating under the RSX-11S Operating System within

the System Controller, consists of a series of PASCAL procedures, bootstrap

routines, the AASAD utilities and AASAD application software. The utilities

are summarized as follows:

(1) Buffer Configuration: The buffers are assigned, organized,

and dedicated to specific locations within the Control Pro-

cessor (CP) and other processors.

(2) Debug Routines: Routines that will assist in the debugging

of software within the System Controller (SC) which includes

status and parameter dumps from the Control Processor.

32

do- r

11C

CA

aI W

o ,d

tU as 4t~

* E*.33

4 ~.

ilIIiiiI
-- i~i'Y'itiii

C
4

z
0

4 C

iM
=0~4

N

0 U 4

0 a a 0 -

+ 0 ~0 0
-J U

U - -
- I

4 4 1 ~1

-4
-4

s-I -,

-H

E

-4 _________________________

34

4.
'-- --

z z

-It

be b

;.J~.J~c~J -

-- al__ 0

-J In~ zzz~ ~ A

mu
D. aca

o oi

(3) Diagnostics: Diagnostics are loaded into the Control Processor

from the System Controller.

(4) Data Transfer Routines: These are parameters and 1/0 routines.

(5) Math Library: Specifies mathematical routines that are neces-

sary in the System Controller to support the Control Processor.

(6) List Routines: Routines that are necessary to generate and

execute Control Processor lists.

The AASAD or Control Processor Operating System (OS) will he a realtime,

multitasking, multiprocessing, list driven operating system. Its primary

function will be the resource allocation and control of the video image pro-

cessing as commanded by the System Controller.

The CP OS commands can be classified into four principal categories as

follows:

(1) Command Sequencing. This class of commands allows the user

to define the sequence of tasks performed in the image pro-

cessing. For example, continue acquisition processing

until a target detection; after which a classification is

performed.

(2) Task Execution. These commands identify which application

software is to be executed and the conduct of execution,

e.g., binarizing an image within a predetermined gate.

(3) Resource Allocation. The resource allocation commands pro-

vide the user with control over data flow and a limited AASAD

processor interface definition. For example, video image

data flow from the Video Frame Memory to the Pipeline Arith-

metic Processors or for video line by line processing con-

trol over the variable matrix preprocessor.

(4) Macro Instruction Execution. The macro instructions are

contained within a Macro Instruction Library and represent

w a definite sequence of commands relating to each macro. The

macro instructions are a predefined sequence of the basic

utility commands identified by the other three categories.

An example of a macro command is outlined as follows:

- Geometric Centroid Macro

- Move data to Pipeline Arithmetic Processor (Resource

Allocation)

36

- Move data from PAP cache memory to scratch pad for

processing (Task Execution)

- Limit Test data (Task Execution)

- Binarize Limit Test output (Task Execution)

- Compute Matrix Sums (Task Execution)

- Move Sum output to Control Processor (Resource

Al location)

- Compute Centroid from matrix sums (Task Execution)

3

1 3

SECTION 4

HARDWARE

DIGITAL VIDEO PREPROCESSORS (DVPP)

The AASAD systems initial complement of video preprocessors consist of

four functions on three cards:

(I) Sum/Difference and Threshold/Binarization

(2) Variable Averaging Mask

(3) Video Edge Detection Mask

A fourth card is required to interface the preprocessors to the AASAD internal

BUS system. The Preprocessor Interface Module (PPIM) also performs the trans-

lation between the high-speed Emitter Coupled Logic (ECL) of the DVPPs and the

Transistor/Transistor Logic (TTL) circuits of the other modules on the BUS

systems. Figuie 13 is a simplified block diagram showing how the PPIM inter-

faces with the DVP's and the AASAD BUS system. 1

The PPIM interface and the Configuration Controller is depicted in Fig-

ure 14 and consists of the following signals:

CNFD - 16 Lines - High True Bidirectional

CNFA - 5 Lines - High True Unidirectional

R/W - I Line - Unidirectional

CREN - 8 Lines - Low True Unidirectional

DISC - I Line - High True Uniairectional

CNFSTB - I Line - Low True Unidirectional

These commands are used to configure the PPIM. Configuration of the PPIM

requires ID and IE Bus data source selection, ID and IE Bus blanking source

selection, and configuring the Area of Interest (AOI). See Figure 15.

Configuration of the PPIM is performed during vertical blanking by a burst

transfer from the Configuration Controller.

The FIFO is reset, then loaded with b4 words during each vertical blanking.

The reset is in hardware - not software control. The first word is the line

count defining the first line of an AOI. The linL counter is incremented at

,4 the start of horizontal blanking. When this count equals the line count from

the FIFO, the next words from the FIFO, (which may contain up to 16 start and

stop pixel addresses), are written into the 16 x 12 RAM. This transfer to RAM

stops when the next line address is detected from the FIFO. This operation is

asynchronous and takes less than 2 microseconds.

38

bo

0

W. u

0 ca
CC.)
r(U

0 w)

0

ri))
0

00

H-

E--4

(a
4-i

'I

-- 4

-H

93

I-. IL

A; 00

0

-J

a I

A- 4 CM

19)NVSsngO ---

indNI 03IA=
Viv *J00INO - -

M cc c CC -4

0 0 0 j 0 4 4

0 w

Lz < z

a~ A

04

Lai L

-,4 -A-

I)ISVW 9NIOJVH3AV RVINDVA

zz HDNHUHJaIG -9 wis
-~~ I URNI1I *HS~flHI .-

H-V

r-4 pn 1 P

0 41

> > E- :: 1PL 1

C") i II F-I F-4_ _ _

I p-i> ,U.~- -

H H Ii o 4o4 -

HI~~~~~~~~- H-4H IHHHIHQ ~ -- -

Wr C'j W! al WZ 00:00 W ;"4 04 <
00 CI .-

H z
r-4 I 0 C C) 0

f-44

z E-i
cj ~ ~ -4 4C)0 0 0 0i C 1 -

w C) C) 0 0l
C' 0 0 0 4 H4

cS 0 0 1 - 0 0 0 1 ~ H H

C, oI 0 C0 0 0- 0) 0 0 0) _0 ZC

-41

During line time the pixel counter is compared with the first word in memory

which is the first start pixel address. A comparison sets the Run condition

and increments the 4 bit counter to the second RAM address which contains the

stop pixel count. A comparison stops the AOI and increments the 4 bit counter

to the third RAM address which contains the next start pixel address, etc.

Figure 16 is a functional diagram of the AOI logic.

The 4 bit counter and the pixel counter are reset at horizontal blanking

time. The operations described above will be repeated for each line until the

next line count comparison is made and the RAM is reloaded with another set

of start/stop pixel addresses.

Configuration Data Definitions:

Configuration Data (CNFD) bits 0 - 9 are the pixel/line addresses.

CNFD 10 directs this word to the FIFO. This bit is not loaded

into the FIFO.

CNFD 11 when set defines the address (CNFD 0 - 9) as the "Start AOl"

address. When clear it is the "Stop AOI" for address.

CNFD 12 when set defines this address as the last instruction of

the line. It inhibits the 4 bit counter (Figure 16) and so pre-

vents old data from the RAM.

CNFD 13 when set defines CNFD 0-9 as the line address. When clear,

CNFD 0-9 is the pixel address,

CNFD 14, 15 are not used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Line/Pixel Address

Store in FIFO

1 = Start A of I

0 = Stop A of I

1 = Last valid address of

this line

1 = This is a line address

0 = This is a pixel address

Not Used

42

202

0I

0

I-z0

- C

'4,

CL cc

UlU

0I

43

, U
ID and IE buses each contain 16 bidirectional data lines, two unidirectional

blanking lines, and two unidirectional Clock Enable lines. The least signifi- j
cant 8 data lines are defined as byte 0, and the most significant 8 data lines

are byte 1. Pixel values are transferred on alternate bytes always starting

a line with byte 0. This alternating transfer is to allow more time for each

value to be transferred.

Data transferred from memory contains configuration data with each value

on its lines for 2 clock periods. The PPIM latches byte 0 on the first rising

edge of the clock after blanking goes false. The next value is latched is

byte I on the next rising edge of the clock. This alternating continues until

the end of the line and blanking goes true again. Clock Enable lines are not

used when taking data from memory.

Data to memory is also transferred as alternating bytes. However, they

are not necessarily contiguous. To accommodate this, two Clock Enable lines

(Bytes 0 and 1) are provided. These lines go true when their associated data

bytes have been on the lines for one clock period and stradle the next rising

edge of the clock at the Multiport Controller (MPC). This allows about 1-1/2

clock cycles for propagation delay and setup time and the difference in the

clock phase between the PPIM and the MPC.

Sum/Difference and Threshold/Binarization DVPP

The Sum and Difference (S&D) determines either the average of two pixel

values or the absolute difference between two values as specified by the

programmed configuration. When configured to sum, the two values are added

together and the sum is then scaled right one place (divide by 2) so the

output is actually the average of the two input values. When configured

to determine the difference, the two input values are compared for magnitude,

the lesser value is converted to its 2s complement, the negative value and

is added to the greater input value.

Input data to the S&D logic comes from two sources as defined by configu-

ration. When this filter is comparing the current video in field, with a pre-

viously stored field from memory any output will identify movement within the

field. This assumes that the platform for the camera/FLIR is stationary or

that there is compensation for platform motion between the fields. When the .

S&D is configured to sum (average), it becomes a smoothing filter.

Threshold and Binarization (T&B) (see Figure 17). The purpose of the T&B

logic is to determine if the value of each pixel is within established limits.

4The value of the incoming pixel is compared with the values set in the upper

44

L4T

S & D CONFIGURATION

CNFA ADDRESS 0000

CNFD DATA BITS

15 14 13 12 11 0 9 8 7 6 5 4 3 2 1 0
S----Data

and Blanking
Input

Mux Selection, A Input

Data and Blanking Input

Mux Selection, B Input

Area of Interest/Data Valid

Mux Inputs

DATA

9 8 7 6 SOURCE

0 X X X Area of Interest 0- 7

1 0 0 0 Data Valid - Variable Averaging Mask

1 0 0 1 Data Valid - IE Bus

1 0 1 0 Data Valid - Threshold Binarization

1 0 1 1 Data Valid - Double Gate

1 1 0 0 Data Valid - Peak Valley

1 1 0 1 Data Valid - Video Edge Detection Mask

1110 Data Valid - Video Input

I 1 11 Data Valid - ID Bus

Sequence also applies to A & D Input

Data and Blank.
9

I = Sum, 0 = Difference

I I ll I I I III II .4 5

0

I -

ccz z Ozz

0 cc 0

0 '-I

0_10

0-
(A -4
a0 0

A vA -MV

o 20-

0 j4A~ __

44

threshold and the lower threshold registers. If the pixel value is between

these threshold values, either the pixel value or a "1" in the LSB is output.

If the pixel value is above the Upper Threshold or below the Lower Threshold, a

"0" is output and either the Above Threshold counter or Below Threshold counter

is incremented. The Configuration Controller may interrogate the counters as

status words.

This DVPP contains a second filter that looks at the LSB of the T&B PP

output. When the T&B PP is configured to binarize the output, a "I" LSB states

that the pixel value is in bounds. The LSB is run through a six-bit shift

register at pixel clock rates so the six outputs contain the binarized data on

the current and the five previous pixels. These six bits become six of eight

addresses to inputs of a 256 x 4 PROM. The two other address bits come from

the configuration register. Two outputs from the PROM are used to set or clear

a flip flop. A change in state of the flip flop enters the current pixel

address into a FIFO which can be interrogated by the configuration controller.

The purpose of this second filter is to alert the Control Processor (via

the Configuration Controller) to possible targets. This filter will detect

periods when the pixel values are within or outside the threshold limits.

4

'4l

9

Data Word at Address 0000

Bit PosiLion

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data and Blanking Input

Mux Selection

0 = Variable Matrix
1 = Sum & Difference
2 = IEBW
3 = Double Gate
4 = Peak & Valley
5 = Video Mask
6 = Video Input
7 = ID Bus

Not Used (3, 4 & 5)

I_ Area of Interest/
Data Valid Input
Mux Selection

9876
0 X XX - Area of Interest 0 - 7
I X X X = Data Valid - Same Sequence

as Data Mux

- - Operating Mode

Data Output Data When Input Is:
Bits Below Within Above

11 10 Threshold Threshold Threshold
0 0 0 0 Data 0 0
0 1 0 0 01 0 0

m 1 0 0 0 Data F F

9 4-A

p.p

L / c. -

Data Word of Address 0001

Bit Position

15 - 8 7 -V 0

i Lower Threshold
Bit 0 is LSB

Upper Threshold
Bit 8 is LSB

Status Words

R/W line set to Read

Address 0 0 1 0 Data 9 - 0 = Over Threshold Count

Address 0 0 1 1 Data 9 -4 0 = Below Threshold Count

Address 0 1 0 0 Data 11 -+ 0 = Second Filter FIFO Out

Variable Averaging Mask

This DVPP determines the average valtie of the pixels within each mask

spec iied by the Conf iguration Controller (CC).

Individual masks are configured during field/frame time rather than during

vertical blanking time. Each change in the mask must be configured prior to

the ,nd of horizontal blanking preceding the first line of the mask. Configu-

ration consists ot defining the number of pixels and the number of lines in

the mask set. The number of pixels may be 2, 4, 8, 16, 32 or 64. The number

of lines may be 1, 2, 4, 8, 16, 32 or 64. Once configured, the DVPP begins

operation when enabled by the Area of Interest (Aol).

Figure 18 is an example of a field where the AO is Pixels 22 " 37 and

,4 lines 9 - 19. Prior to the end of line 8, the DVPP is configured for the first

mask ot 2 pixels by one line. During line 9 the average values of pixels 22

and 21, 24 and 25, 26 and 27, etc., will he output. Before the end of line 9

the DVPP is reconfigured for 2 pixel by 2 line masks. During line 11 the aver-

age values tor pixels 22 and 21, lines 10 and 11; Pixels 24 and 25 - same lines,

eI etc., will be output. Prior to the end of line II the mask is reconfigured for

4x4 pixels, etc.

49I

AOI

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

LINE 8

9 2/1 2/1

10
2/2

11

12

13
AOI 4/4

14

15

16

17
8/4

18

19

20 11-1-5

Figure 18. Variable averaging mask

It i not necessary to reconfigure if a mask set is to be repeated. If the

2x2 mask is o be repeated for lines 12-13 and 14-15, no action by the CC is

required during lines It or 13.

The average pixel value within each mask is determined by accumulating the

sums of pixel values in each mask and when the last pixel value of the last

line of each mask is detected and its value placed into the summing register,

the contents of the summing register is scaled by the required factor.

u Figure 18, pixel 23, line 9 is the last pixel of the last line of the first

mask in that set. Since the sum of 2 pixel values is in the Summing Register,

its output will be scaled right I place to divide the sum by 2. At pixel 25,

line 15, the sum of 16 pixels will he scaled right 4 places to divide by 16.

Determination of the scaling requirements and its execution is in hardware

and not under configuration control.

I

50|

-d !

Variable Matrix Source Configuration

Address Data Bits

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data and Blanking

Source Select

Data

210 Source

000 IE Bus

001 Sum & Difference

010 Threshold & Binarization

011 Double Gate

100 Peak & Valley

i01 Video Mask

110 Video InpuL

ill ID Bus

A of !/Data Valid

Data

9876 Source

OXXX AOI047

IXXX Same sequence as
Data/Blanking

Grid Dimension Configuration

Address Data Bits

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 Not used
Binary exponent of

number of lines in
the grid

Binary exponent of

number of pixels per
line in the grid

This Grid Dimension must be entered before the end of Horizontal Blanking

preceeding the first line of the grid. The dimensions of the grids in the

Variable Matrix are configured by setting the binary exponent of each

dimension in the configuration register. The limits for pixels are 2 and

64 (21 * 26) and the limits for lines are 1 and 64 (20 * 26).

Video Edge Detection Mask

The Video Edge Detection Mask (EDM) Preprocessor performs arithmetic

operations on the nine pixel values of a 3 x 3 matrix. Consider this mask

as a window on a TV raster, 3 lines high and 3 pixels wide, and moving so

the current pixel is always in the lower right-hand corner. Thus, each pixel

time (after the third pixel of the third row) three new pixels enter from

the right and three drop off on the left.

The purpose of this preprocessor is to function, under program control,

as a variety of video masks. Examples of some video masks are shown in Figure

19. To accomplish this, the nine pixel values of the 3 x 3 mask pass-through

scalers and into an arithmetic pyramid. Here, under program control, the

necessary arithmetic operations are performed (see Figure 20).

The EDM contains three 1024 x 8 bit memories, each is capable of storing

the pixel values for one line of data. Lines of data are written sequentially

into the three memories. Thus, at any time after the second line following

the end of vertical blanking, two of the memories contain the pixel values

for the two previous lines, while the current values are being written into

the third memory. The pixel counter, which is reset to 0 at horizontal retrace

time, provides the address to all three memories. Thus, data being read

from the two memories are the values of the pixels directly above the current

inpult pixels (see Figure 21).

A multiplexer connects the memories to a 3 x 3 array of 8-bit registers.

This multiplexer is sequenced to transfer the data which was stored two lines

before, to the bottom register and data stored one line before to the middle

register. Current data is stored in the top register. Also data stored in

the first (left) rank of registers is transferred to the second and from the

second to the third. Thus, at any time after the second line of a field and
the second pixel of a line, the nine registers contain a 3 x 3 array of pixel

values.

Nine programmable scalers are connected to the nine registers. The pixel

values may be scaled right (divide by 2, 4, 8, etc.), left (multiply by 2,

4, 8, etc.) or do not multiply. The scalers are identified by the circled

numbers on Figure 21. The current pixel goes to scaler 7. The center pixel

goes to scaler X. Four bits are required to configure each scaler (see Figure

22). Scalers 0, 1, 2 and 3 are configured by the word in address 01, etc.

SFO corresponds to tho least significant bit of each group of four bits in

the word. If tihe value is not to be scaled, scale factor 1000 is loaded.

i5'2

-,

l 9 , . . I I] . ; , . ., . V i _ 0 j - - - -

1 - 1 1 - 1 -1 1 1 -1 - 1 1 - -1

-2 -1 1 1 2 1 -1

1 -3-I--1

NORTH NORTHEAST EAST SOUTHEAST SOUTH

1 -1 -1 1 1 -1 1 1 1

1 -2 -1 1 -2 -1 1 -2 -1

-1 1 1 1 -1 1 -1 -1

SOUTH" iJ'" WEST NORTHWEST

o -i 0 -1 -1 -1 1 *-2 1 -1 0 -i -2 i -2

-1 4 -1 -1~ g -1 -2 4 -2 0 4 0 1 4 I

o -1 0 -1 -1 -1 1 -2 1 -1 0 -1 -2 1 -2

1 2 3 4 5

*1 2 1 0 1 2

-2 2 3 X 4 -1 -1

-1 -2 * 1 5 6 7 1 1

3 X 3 ARRAY.4PIXELIX71141

"Xi +Il WHERE IDENTIFICATION x 14-6I
X-[2+12x4)?) -(0+ 1 2x 3) +]

• ~~~Y" 0 wLO x 1)."2;J - IS ,1x Ib71

035 18

Figure 19. Examples of Video Edge Detection Masks

53

,,

¢0

cc W- / I-
400

wW o
> > ~ J

II

UC

4V
U J U

I- JI- K
,-Y

Cu

*0

, E

N N M

x

I co -
C 4

5 4

N Nm NCA

n r4 4i in 4J I

t I

n U N Nf No N

N en-t t '

54~L

.44

-.4

4414

4 ...

)

4 Li *.- .4 M)
j C: . W .,4 41) 4 . -i ,J P4.

4) 4 Mbo a-1 *.l N
4J..4 L) ,4 4).-A1 1

*4 41 4 m~ N3 4"

44~~~a 4): aMC4 P

4 ".4

N C4 -

'04

co~~. Li 0 n-4

tlI

55
a)

H F-H

w 0

C,.. z c c

4 o mc <CC m 5C C Xc

0 0 C, -7 -7

.10

I I I CO,.Xn -~ - -- -- -

;4

13) W -) 0Y cz

Ior.jj uKVN UN~N:

C.) C.) w2 2 2

~~~- -~ - -~ -~ -N N-N- - 0

S4 W

a; I r- NIIN N.a'N NN N

C4! C- - - -- - - - -

1 - -- -u- CI
4~ N NN N N

~,-0 0~ -4I 0 -i -41 --

00.N - N N' N .-.. N N NNN N
I-

ClJ ~ ~ ~ ~ ~ 0 0 CD ID C) 4 u4I'N .NN
I N-

m cl 0 0 0 0 C0 - N N~ N N iNN

I6s N N N N N N N IN

0 0 0 0 - 0--- -~

56



Eight ALU/Latches are connected to the scalers as shown in Figure 20. The

arithmetic functions that may be programmed are shown in the Function Select

Table in Figure 22 . As with the scalers, each ALU requires 4 bits to program.

Configuration word 0100 configures ALUs 0, 1, 2, and 3 and so corresponds

to the LSB of each four bit portion of the configuration data word. The ALUs

are identified ALUO - ALUE in Figure 21. The A input to each ALU is the lower

input, i.e., the A input to ALUO connects to scaler 4 and the B input connects

to scaler 2. Also the A input to ALUC comes from ALU 9.

Some masks require absolute values. To accomplish this, two circuits are

furnished that will, under configuration control, complement and add I to nega-

tive numbers. Dat;i bits 12 (output of ALUC) and 13 (output of ALUD) of con-

figuration address 7 (set true) commands the absolute value. This mask may

be configured to solve any mask shown in Figure 19.

The output of ALUE may be scaled by the same means as the nine in the front

end are.

Two's complement arithmetic with extended sign bit is used throughout this

mask. Since scaling of the output of the final ALU is under configuration con-

trol and not in hardware, it is possible to have an overflow condition. The

resulting value could be very misleading. To prevent this, hardware is included

in this mask to examine the output of the output scaler and if overflow exists,

output the maximum value - positive or negative - depending on the actual data

value. An overflow also decrements an overflow counter that, when it reaches

zero, sends a flag (TBD) to the Configuration Controller. Suggested use of this

counter is to be preset during vertical retrace time, to the maximum number of

overflow that can be allowed. If this number is exceeded, the scaling of the

output should be changed.

There are no hardware restrictions on the time of configuration. Configu-

ration requires the Configuration Controller to issue the commands and addresses

shown in Figure 22. These data are held in configuration registers until

they are changed by new configuration. The exception is the overflow counter
.4

which must be reset for each field, if it is to be used.

17



Data bits 0-2 of address 0000 selects the input source multiplexer for

data and blanking. The selection is:

Data Bit

2 1 0 Source Selected

0 0 0 Variable Averaging Mask PP

0 0 1 Sum & Difference

0 1 0 Threshold & Binarization

0 1 1 Double Gate

1 0 0 Peak and Valley

1 0 1 IE Bus

1 1 0 Video Input

I l I ID Bus

Data bits 6 - 9 of address 0000 selects the input source multiplexers

for Data Valid or AOI. When Bit 9 is not set, bits 6 - 8 selects AOI inputs

0 - 7 from the PPIM. When bit 9 is set, bits 6 8 selects Data Valid inputs

in the same sequence as the data multiplexer above.

Scaling and Arithmetic Configuration (Figure 22) Addresses I - 7 are used

to configure the Scaling and Arithmetic operations. When Data bits 12 -113 in

Address 7 are set, circuits in the arithmetic pyramid (Figure 21) convert nega-

tive numbers to their absolute (positive) value.

Address 8 sets the overflow counter to the contents of data bits 0 - 11.

CIRCUIT CARD DESIGN

The AASAD circuit cards (modules) will he fabricated using the Multilevel/

Multiwire* technology. This method of circuit card construction is closely

related to conventional printed circuit technology and significantly superior

to the wirewrap fabrication technique. In the areas of weight, high speed

electrical characteristics and controlled impedance, multiwire and printed

circuit are about equal and both are superior to wirewrapping. For high

density packaging multiwire has a slight cost advantage over printed circuit

afor the same electrical properties.

*MultiwireoTs a U.S. registered trademark of Kollmorgen Corporation.

58



The selection of multiwire in lieu of printed circuit or wirewrap was

based on six parameters:

(1) Weight reduction

(2) Smallest package volume

(3) Vibrational acceptability

(4) Electrical characteristics and consistency from card to card

(5) Ease of duplication

(6) Cost

The first four parameters were given the greatest weight in our consider-

ation of these technologies for the AASAD fabrication. The weight and package

volume considerations both favor the multiwire and printed circuit due to the

pins required on the wirewrap card. The vibrational environment of AASAD

would necessitate some method of securing the interconnecting wires to the

wirewrap card and even then would be more prone to failure than either printed

circuit or multiwire. When considering the electrical characteristics multi-

wire was a clear "winner" since wirewrap does not provide a constant or con-

trolled impedance and does demonstrate a very high crosstalk characteristic.

Multiwires small cross section signal wiring and the right angle crossings

provide a lower capacitance coupling than printed circuits where the parallel

lines are separated by a few thousandths of an inch and run side by side,

over and under other signal lines.

Ease of duplication is clearly in favor of printed circuit and multiwire

and cost favors Multiwire. Since both printed circuit and wirewrap fabrication

techniques are well known, perhaps a brief explanation of multiwire technology

is in order.

The multiwire circuit cards are produced in a simple seven step process:

(1) First, the connector plug-in fingers, power and ground plane

are defined and then fabricated using a conventional printed

circuit board process and epoxy glass laminate.

(2) Next, an adhesive material is applied to the board. It is

this material on which the wires are placed. The plug-in

fingers and card-guide areas are not covered by adhesive.

(3) Numerical controlled (N/C) wiring machine places the wire

* pattern on the boards. Each wire begins and ends at a hole

location and may intersect any number of hole locations

making tip the net.

* 9

.. . . ...... .- .' - - . . -



(4) Next the wires are pressed into the adhesive and cured.

After the wires have been encapsulated in epoxy, the var-

ious component holes are drilled on an N/C machine.

(5) Copper is deposited in the holes by an electroless, addi-

tive plating process which bonds each wire end to the wall

of the hole.

(6) Fabrication is next. Techniques used here are standard

printed circuit manufacturing methods.

(7) Every Multiwire board is given an electrical continuity

test then baked dryed and the outer periphery blanked or

routed. For better quality control and traceability, lot

control numbers are permanently placed on every Multiwire

board.

The circuit interconnection uses insulated wires, 34AWG, placed on a

standard 100 mil grid (50 mil minimum) with random crossovers as required.

Two levels of wires can be placed on each side of the card.

The extensive use of high speed Schottky, ECL 10K and ECL lOOK circuits

make the electrical parameters of characteristic impedance, backward crosstalk

and signal line delay a major concern in the card design. The construction

techniques used by Multiwire provide a very close proximity between the signal

wire and the cards ground plane, resulting in a more consistent characteristic

impedance for the signal line.

The characteristic impedance (Zo) of a single wire over a ground plane

is calculated by:

Zo (60 ) Zn 4h

where Er dielectric constant of medium separating the wire and ground

plane

h height of wire over ground plane

d diameter of the wire I

For multiwire Er 4.5, the first layer of 34 AWG wire (6.305 mils diameter)

is between 9 and 10 mils above the ground plane. I

' ( 60 ) 4(0.01) 52

Zo = V n _.003 - 52Q

# 7

~'0



The second level of wiring is 19 to 20 mil above the ground plane and

provides a calculated Zo 2' 77Q. Laboratory tests have measured the first

level impedance within a 48-50 ohms range and the second level at about 78

ohms. This impedance is constant over a given card and from card to card

of the same type.

The Backward Crosstalk is that portion of the electromagnetic energy

coupled from the active signal line to a nearby signal line, via a mutual

impedance. This coupled pulse results in a reduction of noise immunity.

Two components constitute the total noise, the forward propagating noise

wavefront (Vf) and the backward propagating noise wavefront (Vb). The ratio

of the peak noise values on multiwire cards is:

V b - 0 .1 3 8 2 T)

where T is the coupled length expressed in time and tr is the rise time of

the signal applied to the active line.

The open Circuit Crosstalk Model is:

T kn'

Vb

R
C 0

m7 L ..

IV 0

0

V. = Input voltage transient to the active line

, V b = The coupled voltage backward noise on the passive line

Vi - - INPUT SiGNAL Vi
0 tr

4 vb  -- BACKWARD CROSSTALK AT OPEN END

\ REFLECTED BACKWARD
CROSSTALK AT R ENDI 30 .

I -I

V SIGNAL AT R
0 0Vo,

0

T+1

5L 
,. °



For tr < 2Td the backward crosstalk is approximately

Vb = Kb V i

For tr > 2Td the backward crosstalk is approximately

Vb = Kb Vi t r )

where Kb = Crosstalk Coefficient

K = (in + (mZo
b 41 d (Zo m

The backward noise increases proportional to the coupled length of the

line and is at a maximum when tr = 2Ti where Ti is expressed in units of

time. For various permutations and combinations of signal wiring, inter and

intralevel active and passive lines and various line lengths the maximum

crosstalk noise voltages can be calculated. One typical configuration would

be to assume TTL level switching transients of 3 volts/2 ns and a DC low

state noise margin of 0.5V the calculations provide a value of Kb 0.06

for two active lines adjacent (either side, 50 mils spacing) of a passive

line and produce a value of coupled noise (Vb) of approximately 180mV. In

general the standard 100 mils spacing will provide a Kb value of 0.013 for

the inter layer and 0.032 for the outer layer. When the spacing is reduced

to 50 mils these values increase to 0.052 and 0.101 respectively.

These values compare favorably with standard printed circuit technology

and are superior to those experienced in wirewrapping construction.

The multiwire cards exhibit a delay time of approximately 1.8 ns/ft which

is an acceptable value.

In summary the multiwire fabricated cards provide the AASAD system with a

lower weight, smaller volume package and excellent electrical circuit properties.

.4

62
iI

62 D

I a , ! .... .... i' " ! _Ill f.. . . . . .
" L

. ..



ri

SECTI B)N5

NEXT QUARTER ACTIVITY

The planned activity for the next report period, I January 1981 to 31 March

1981 primarily revolves around the logic design, mechanical design and the

completion of material orders including the circuit cards.

The Digital Video Preprocessors will complete their integration testing in

the MVIPS system. Programming and algorithms will be defining additional

macros and micros for the program base library. Programming will also start

preparation of some program documentation.

.4



APPENDIX

This appendix cnntains Section i of the Technical proposal dated 7 April

1980 and includes editor Li corrections found after submission of the Techni-

Cal proposal tand changes made during the iVIPS development. Some of the

original contnts, that art, not required for clarity or technical content,

h1aV bet n removed, corrected/changed areas are identified by a straight line

in the right (or left) margin adjacent to the corrected/changed line, figure,

table, or formula.

In the section describing the [)igital Video Preprocessors there may be

features or specifications that are contradictory with the statements or

specifications stated in the main body of this Technical report. Where con-

tradictions occur the technical report takes precedence.

,4

p P--



SECTION 3

TECHNICAL APPROACH

This section presents a detailed description of FACC approach to the
development of the Autonomous Acquisition Simulator System and Associated
Data according to the specifications and requirements outlined in RFQ
DAAK70-80-C-0416. This description begins with a summary of FACC's proposed
baseline design compliance with the technical and derived requirements. The
baseline design is then described in detail followed by a description of an
optional module called the Integrated Memory Processor (IMP).

3.1 INTRODUCTION AND REQUIREMENTS COMPLIANCE

The compliance of the proposed baseline design to the specification and
derived requirements listed in the RFQ are summarized in Tables 3-1 and 3-2.
As anticipated, the most severe computation requirements are encountered in
the recursive/nonrecursive filtering, image compression and target screening/
cueing areas. The recursive and nonrecursive filter implementations require
dedicated hardware for filter sizes that exceed minimal dimensions and perform
in near realtime. The target screening/cueing algorithms will be implemented
by the software programmable high speed digital microprocessor units. Many of
the algorithms in these areas are still in a state of development; this means
that the AAS system must provide a convenient and flexible procedure for the
modification of existing algorithms and the implementation of new algorithms.

In conclusion, the proposed baseline AAS system design will comply with
most of the execution time requirements for the typical smart sensor algorithms
as listed in section C, Table I of the RFQ. However, with the optional Inte-
grated Memory Processor, the proposed baseline design will meet all of Smart
Sensor algorithm simulation requirements.

3.1.1 SUMMARY

In order to meet existLig and future requirements, the algorithm simulator
design is based upon a clear understanding of the fundamentals of existing
smart sensor algorithmic methodologies. As a result of the absence of a
definitive all-encompassing solution to the target acquisition, tracking, and
identification problems, the baseline AAS design is flexible enough to allow
accommodation of the computational requirements of a dynamically evolving
field.

W

It is difficult to articipate fully the extent and degree to which the
present approaches will be modified or supplanted by more successful formula-
tions. However, the progress achieved to date provides a reasonable basis
upon which to build quantitative guidelines for an algorithm processing sys-
tem that allows the user to not only simulate existing capabilities, but also,
through a fundamentally software oriented design, to modify and/or add further
refinements toward the ultimate goals ot the intended weapon systems utilization.

3-1

I s. .n ,, .-



TABLE 3-1. TECHNICAL REQUIREMENTS COMPLIANCE SUMM'tARY

3-2 .



TABLE 3-1. TECHNICAL REQUIREMENTS COMPLIANCE SUMMARY (Continued)

3-3



TABLE 3-1. TECHNICAL REQUIREMENTS COMPLIANCE SUMMARY (Continued)

'I'h1 next te', Wtbhscc ions of the proposal briefly examine the key algorithmic
areas ol imaige enh111anemL1nt *t, target detection and extraction, target classifi-
cation, target tricking ad bandwidth compression. Only the key concepts and
most critical formulat ions are highlighted with the goal being the derivation
of their implicit compltationalI ramif icat ions. A software based system will

be able to implement a host of other algorithms that are either modifications
of the ones considered here or totally new designs. This is the key asset of

a flexible software oriented simulator.

It should be noted that the computational load considerations use the
generic term "operat ion" for adds, subtracts, multiplies, divides and logical
comparisons. Although individually distinct, from a computational load point
of view, they possess sufficient similarity to be included into one category.

3. 1.2 DERIVED SYSTEM REQUIRI2iENTS

This subsection defines the AAS system requirements from the computational

loads imposed by the desired algorithms.

3.1.2.1 Image Sampling (B.3). image sampling represents the transition from

the analog to the digital domain where sophisticated and complex algorithms
• 4 can be applied to extract information about target and background. Thus it is

critical that in this transition one does not lose valuable information and

careful Consideration be paid to quantization and sampling.

S Thi, TV foriit a525line. sampled at a rate of 9.8 MHz. Each

Iho rio t, i !11c 1)rovid,.es 64i0 ictIre t'lements (p ixe Is). Each pixel will be

digitized to 8 bits representing a range of 256 discrete gray levels.

3-4

. I



TABLE 3-2. SMART SENSOR ALGORITHM REQUIREMENT COMPLIANCE SUMMARY

'4

i 3-5



i

For 875 line TV format the sampling rate will be 25 MHz. There will be
720 pixels per line. Based on the Nyquist criterion, the maximum input fre-

3 quencies will be 4.9 MHz for the 525 line format and 12.5 MHz for the 875

line format.

The internal clock will be synchronized to the incoming composite video on
separate vertical/horizontal sync signals. Frame rate of 60 Hertz ±2% will be
acceptable. Horizontal and vertical sync will be reconstituted after going
through each section of the preprocessors so that frame stabilization will be
accomplished.

Sync dropout compensation will include one horizontal line buffer to store
the data of the previous line to be used in place of the present line in case
of a one sync dropout. In case two to eight consecutive syncs are missing,
flags will be sent to the configuration controller to delete the processing
of those lines for the present field. In case of nine or more missing syncs,
the present field will not be processed.

3.1.2.2 Image Enhancement (C.1). The requirements for image enhancement
refer to those aspects of image processing which are intended to accomplish
one or more of the following:

(1) Remove "artifacts" introduced by the sensor, readout circuitry,
amplifiers and A/D converters.

(2) Enhance, that is increase the gain on, certain image regions, fre-

quencies, or similar parameters of the signal.

I
In effect, much of image enhancement has the aspects of a bulk-filter, in

the sense that the operations to be performed are executed over the entire
frame on a repetitive basis. On the other hand, the operations are generally,
but not always, of a simple nature.

The AAS will be required to simulate a series of image enhancement algorithms.
For the baseline approach, these requirements have been taken to mean "represen-
tative" but not "exclusive" algorithms. Image processing algorithms may be
naturally subdivided into four all-inclusive categories as follows:

(1) Simple algorithms with modest computational load.

(2) Simple algorithms but requiring severe computational requirements.

(3) Complicated algorithms but modest computational load.

(4) Complicated algorithms and severe computational load.

3-6

A..



Most of the current enhancement algorithms fall into classes one and two.
A few fall into four, while category three is rarely encountered due to the
difficulty in reconciling a complicated algorithm with a modest computational
load in a full frame processing environment.

a. Category 1 Algorithms

(1) Detector array compensation

(2) Local area gain brightness control (LAGBC)--simplest algorithm
based on a local scene mean and variance.

(3) Simple edge detectors (Sobel, Roberts, etc.)

b. Category 2 Algorithms

(i) Global histogram modification

(2) Convolution type filters with kernels greater than 4 x 4.

(3) Median filtering

(4) Some recursive filters

c. Category 3 Algorithms

(1) Scan jitter elimination through use of a reticle

(2) Auto-focus maintenance

d. Category 4 Algorithms

(1) Local histogram modification

(2) Some recursive filters

(3) Initial focus acquisition

As an example, the LAGBC algorithm of the simplest type is based on the
linear transformation

VM = V + -R(V V) (1)
M R R R

where VR is the raw input video, VM the modified output videoVR the local
mean ofVR, OR2 the local variance of VR and a gain constant. The quan-
tities VR and OR2 are computed in a recursive manner.

The next level of LAGBC algorithmic complexity, but with similar and actually
less severe computational requirements, is represented by the mapping

3-7

9.
?



VM = B(VR) (2)

where B is essentially the inverse function of the global histogram integral.

Further complexity results from operations of the form

VM = B(V R + (VR - ) (3)

RR

which is a combination of the previous two approaches.

Finally, at the highest level

VM = BL(VR) (4)

where the local function BL is determined within a window and must be recom-
puted at each point.

Assuming a 875 x 1024 image size, the number of operations required for
each of the above approaches to the LAGBC algorithm are shown in Table 3-3,
which illustrates a range of over a decade in computational load.

When other image enhancement algorithms are examined, they are found to fall
almost into the same range. Table 3-4 shows the computational loads for diode
compensation of staring arrays, push-broom arrays, and median filtering.

The baseline design for the AAS includes the capability for incorporating
Category I and 2 image enhancement algorithms and portions of Category 4
algorithms into dedicated "preprocessors". The preprocessors will be software
controllable modules. One module will hand-off its output to another in a
pipeline manner. An example of a preprocessor implementation of equation (1)
of Table 3-3 is shown in Figure 3-1.

TABLE 3-3. COMPUTATIONAL LOAD FOR LAGBC ALGORITHMS

LAGBC Algorithm No. of Operations

(1) VM V R (VRR 50 x106

R

(2) VM = B(VR) 10 x 106

(3) VM VR +-RR V)

(4) VM = BL (VR )  600 x 106

3-8

-1--



CCSL

0 u

-CC

CCC

4 LL4

+C

IS13A319t M-B

ot 
.-'

LL0

0 <0
-- L

..
wZ

4 1L
0 ->

o C

4....



ii i

TABLE 3-4. COMPUTATIONAL LOAD FOR DIODE COMPENSATION AND MEDIAN FILTERING

Algorithm No. of Operations

Diode Compensation: Staring Arrays 14 x 106

Diode Compensation: Push-broom Arrays 4 x 106

Median Filtering 200 x 106

The image enhancement requirement may be summarized as follows:

l (1) Algorithms are required which entail 4 x 106 to over 600 x 106

operations.

(2) The average processing time is about 6 secs. Without dedicated
preprocessors such functions may require up to several minutes.

(3) Without some pipelining arrangement when several algorithms are to
be chained a problem arises in that

(a) either a large intermediate memory is required (e.g., one frame
scratch pad) or

(b) the image must be segmented and the algorithms performed
serially on the segments.

3.1.2.3 Target Detection and Extraction (C.II). The ultimate goal of an
autoscreening/cueing system is the identification of specific target objects in
an arbitrary scene. The current autoscreening/cueing methodologies have char-
acteristically evolved into two distinct phases. One that localizes in the
FOV possible target-like objects that possess a reasonable set of fundamental
attributes allowing an algorithmically simple prescreening capability against
the typically significant number of extraneous clutter scene items. The second
phase examines in more detail the individual objects localized in the "pre-
processing" phase and is in effect the classifier phase.

There are various approaches to the object localization and prescreening
phase. It is imperative to scrutinize most carefully the individual detailed
steps of each methodology to ascertain that the algorithm simulator is capable
of handling the processing requirements within acceptable bounds. Although
at a specific pixel neighborhood the local algorithmic considerations may be

4fairly reasonable if these are repeated 896,000 times (over a 875 x 1024 image)
then the total processing time can be extensive.

Two prescreening methodologies are illustrated next. They are taken from
published work (References AD-057-191, AD-060-849 and AD-060-850). The AAS
will he able to simulate these and other comparable techniques.

3-10



a. Method A (Reference AD-057-191). This technique (outlined schematically
in Figure 3-2 and commonly referred to as the Superslice algorithm) first con-
siders a partition of the scene into subframes. Next a median filter is applied
for noise smoothing. The median filter replaces each pixel by the median value
of the intensity distribution enclosed by a window of predetermined size about
the pixel considered. Next a 4 x 4 difference edge detection mask is applied.
This mask selects the maximum of the differences between 4 x 4 averages over
adjacent pairs of horizontal, vertical and diagonal neighborhoods. This opera-

tion is followed by an edge thinning phase considering edge values normal to
the direction of a given edge and assigning zero response to the edge of any
point within the search mask that has a greater response.

A histogram is constructed for the original smoothed subframe and a set of
trial intensity thresholds is selected. The thresholded subframe is then
"cleaned" from small and extraneous noise objects by a "shrink/expand"
algorithm. This algorithm first eliminates all l's which have a 0 as their
immediate neighbor. Then "expansion" takes place by replacement of a 0 by a

1 if any of its neighbors is a 1. Each phase of the "shrink/expand" algorithm
is applied a number of times depending on the size of the object that one
desires to eliminate.

A connected component algorithm is next applied that performs the collec-
tion of thresholded and "noise" cleaned image points into aggregates correspond-
ing to the various individual disjoint regions in the scene. The basic approach
is to raster scan the subframe, labelling topologically connected regions.

SUBFRAME

MEDIAN HISTOGRAM
FILTER THRESHOLD
SMOOTHING SELECTION

EDGE SHRINK/
DETECTION EXPAND

EDGE ESTABLISH
THINGE CONNECTED

NCOMPONENTS
.4

035 26

FIGURE 3-2. METHOD A; PRESCREENING ALGORITHM (SUPERSLICE)

3-11i



Finally, a component validation step is executed which certifies a given
connected component as a viable candidate if the following three criteria are
satisfied:

(I) Border points coincide with a significant number of edge map points
(say, greater than 50% coincidence).

(2) Sufficient contrast exists between border region points and interior
points.

(3) Size falls within predetermined range.

For a 875 x 1024 image, the various phases of the above prescreening
algorithm lead to the computational load shown in Table 3-5.

b. Method B (References AD-060-849, AD-060-850). This approach has been
implemented with analog hardware. In effect it provides an edge threshold
and two intensity thresholds (for hot and cold object designation) that allow
a raster scan pass over the scene to isolate target-like areas. Schematically
the method is as shown in Figure 3-3.

AAS will be able to duplicate with digital computations the full spectrum
of this analog processing technique. In particular, it will be able to simu-
late all the key steps as follows. First an edge map is created through an
edge detector of the form

EDGE= e = I(n + 1, k) + I(n, k) + 2[(n - 1, k)
-l(n + 1, k-i) - 21(n, k-1)

-I(n-1, k-I)

TABLE 3-5. COMPUTATIONAL LOAD FOR METHOD A
(875 x 1024 IMAGE)

Algorithm No. of Operations

Median Filter 200 x 106

Edge Detection 32 x 106

Edge Thinning 7 x 106

Threshold Selection 106

"Shrink/Expand" 70 x 106

Connected Components 7 x 106

Component Validation 10 x 106

3-12

I'



2 2

- - I ,' > o
0\

3-13

I I . . . .. .



where (n, k) is the current row (n) and column (k) pixel under consideration.

Next an edge threshold is computed in the form of a constant times the
weighted sum of the last row and next to last row absolute edge values. That is,

TS = K(E) * VAR (N - 1)

VAR(N - 1) = a * VAR (N - 2) + (I - a) * R Zel
NR

where K(E) is a constant, a is the recursive filter time constant, NR is the
number of row pixels and ei is the absolute edge value.

A background estimate is also provided by a running background estimator
implemented as a low pass filter spanning a given number of horizontal and
vertical pixels. After subtraction of the background estimate from the raw
scene intensities cold and hot target thresholds are computed through a process
similar to the one utilized in the edge thresnold determination.

Finally, on the basis of the edge and brightness thresholds target-like
object intervals are generated by utilization of three criteria:

(1) Occurrence of an edge at the start of a bright

(12) Occurrence of an edge at the end of a bright

(3) Occurrence of an edge at both the start and end of a bright

Table 3-6 illustrates the AAS computational load for a 875 x 1024 image.

Execution of the full set of algorithms of method A requires approximately
700 x 106 operations (with a factor of 2 added to account for the various
uncertainties), Method B leads to about 250 x 106 operations. With a
pessimistic 300 nsec operation execution cycle time AAS will be able to
process each method in about 3.5 and 1.5 minutes, respectively.

TABLE 3-6. COMPUTATIONAL LOAD FOR METHOD B (875 x 1024 IMAGE)

Algorithm No. of Operations

Edge Map 5 x 106

Edge Threshold 2 x 106

Background Estimate 90 x .O6

Hot and Cold Target Thresholds 3 x 106

Target Interval Generation 3 x 106

I3
3-14

",i - 1' "



3.1.2.4 Target Classification (C.II, C.III). After an image has been seg-
mented into targetlike and nontarget regions, the next function of an autono-
mous cueing system is to actually classify the regions. FACC realizes that
in developing a processor for testing such algorithms that the system must be
capable of handling a generalized target classifier in which all of the
information in a sequence of images is utilized for target identification.
This implies that the geometrical relationship between candidate targets as
well as the scene structure could be used for determination of each of the
target types.

A generalized target classification would function in a manner similar to
that shown in Figure 3-4. The pixels for each candidate object (includes
clutter) as well as components of a scene are passed to the target classifier
from a scene segmentation routine. In principle target classification can be
based on a statistical analysis of the target as a whole or for sufficiently well
resolved objects it can be based on the geometrical relations of its com-
ponents. For most systems only one or the other of the two methods would be
used to identifv an object. But conceivably both methods could be used so
that a preliminarv target ident ification would require removal or any conflict
between the two obicct classifiers. A final determination of the classifica-
tion of each target would be made by an examination of the scene model con-
sisting of any identified scene components and all candidate targets. Their
relationship could be based on a few simple scene segmentation rules like
"ground target not in sky" or a more formal system could be defined. Any
target identification conflicts remaining are resolved (may require subsequent
scene aalysis) and a final target cueing assignment is made. The scene model
has the further advantage of identifying significant structures like a road or
a truck convoy to aid the pilot in his navigation.

While is is important that the processor be capable of simulating a complete
scene classification scheme it is realized that much of the testing will be C ne
on more basic aloorithms where the contextual relations of a scene are either
not used or of no interest. Very often it will be necessary to classify the
targets before they become sufficiently resolved to even apply syntactical
pattern recognition methods. Usually the primary clutter rejection will be
based on a statistical scheme for object recognition in order to reduce the
amount of computations ultimately required. Consequently it is important that
the processor be capable of simulating existing and proposed schemes for
statistical target classification.

A statistical object classifier proceeds in two steps. First the essential
characteristics (features) (of the target are extracted from its image. These
fe.atures are chosen to represent the qualities of the target which as much as
po;s ible uqiquelv define that object typo when compared with other object
tvpes of intere:t. Some measure of similarity is used for a pairwise compari-
son of the sample feature vector with a set of reference feature vectors.
The target category giving the best match (most similar) is assigned to the
obIect being tested.

3- 5



SEGMENTED
I SCENE

SCENE CANDIDATE
STRUCTURES OBJECTS

STRUCTURE STAT ISTICAL SYNTACTICAL
CLASSIFICATION TARGET TARGET

CLASSIFICATION CLASSIFICATION]

CASSIFICATION

CUED TARGETS
& STRUCTURES 03-548

F'1g;LRL 3-4. GENE.RAITZED) SCENE CLASSIFIER

Anv target Cl~issitiioation scheme to he implemented must be capable of
operat ions in 3., hrtA tine' as- p1OSS i hi Consequ0ently it is common to
mod ifv Lt, Met hod iltdesor ibed~ to reduce thle computatilonal burden to manage-
a Ibl p )ro po rt io ns,. A t VP ica I .,tt 1st ica I t arget c lassifier is shown in Fig-
ure 3--). An in itijal step has bon added to reject as much clutter as possible
before 'te lagesre s~iecifi ally identified. This is implemented using only
a twv, cit ogorv <lassification, i.e., target and nontarget. To maintain high
thirouibut on]Y va few stample features are cal cul ated and usually only thres-
holds- test ing- on the featurc, values is done. This may be accomplished in a
1W_,rarchical fashiion usingZ ea:ch feature or it may be done for some combination
4 features, such as the Vi1sber Linear d iscriminant. A typical set of features

mih'nIuoo et ra en W~d tli, mean length, perimeter pixel count,

meain peaik oi Miniimum pixe l intensity and other easily calculable functions
base- d on1 01h' lboh Cc in

The rema in inup ca Ia to ob ct S aell processed With more. comput ationally
a1tt claiV lyeI atres . Ideal lv, a featunre vetor should be invariant with respect

tc 1'(t s i ZL', 1 0 at ion 1ori out at ion and hr ight ness and should be independent
ot the order in which the p ixelIs are processed. Thle feature vector shoull1

a 1 so hbe aslow d iMens ion as- puOss 11)1e vet act uall Iy ref leect target shape and/or

i t Lrnla I st riioture . ',orma I ~i7Aod Fourier descriptors of an object 's boundary are
o tte n s d ecueof the i rIua a proper ties . They alIso have thle advan-
taIge of 1 i up eaIs iiy ca lou I h eustu the' d iso rote Fourier transform. Another
populi a0ishape (loer iptor which ailso cons-iders an object's interior points is
the' 'Pt of eenMOIIonts; invairkant to scaile, traus-lat ion and rotat ion. Other
I eaitures irc some!tlaos; Wused WluI ii a1r0 a funct ion of ta'rget size, shape an1d

hr i p t1n16



EXTRACT
OBJECT PIXELS

CALCULATE LOW-LEVEL
FEATURE VALUESI

THRESHOLD TEST REJECTEL
ON FEATURES " LUTiER

CALCULATE HIGH-LEVEL
FEATURE VALUES I

RFECHIERARCHICAL
REFERENCE TARGET
FEATURE SET CLASSIFICATION

CLASSIFIED
TARGET 03-5 47

FIGURE 3-5. GENERALIZED STATISTICAL TARGET CLASSIFIER

When a sample (test) feature vector has been calculated for an unknown

object it is compared with a reference set of features representing the

various possible target categories. It is presumed that for the autonomous

acquisition processor the type of military targets of interest, e.g., tank,

APC, jeep, etc. are known prior to the mission and the classifier has been

trained with images of these targets. The method actually to be used for

assigning a target type to an object depends upon how the training data has

been categorized and the level of performance required given the constraints

of processor throughput and frame time.

One of the most straightforward ways of implementing the target classifier

is to utilize the training vector set directly. For example if M images for

each of N target types were used to calculate N clusters of M feature vectors,

then a K nearest neighbor algorithm can be used directly. The K (a predeter-

mined constant) nearest feature vectors to the sample feature vector is

determined. Euclidean distance in the feature space is used as a measure of

the separation of the vectors. The object is assigned to the category which

contributed the largest number to the set of K vectors.

If the training set is large enough, it may be worthwhile to characterize

the classes of features by their statistical distributions. This has several

advantages. Decisions can be made based on statistical estimation theory and

3-17



a confidence level can be ass igned to each decision. A target category or

subcategorv is specified by a relatively small number of parameters instead of

a set of feature vectors. If n features are calculated, the K-nearest neighbor

algorithm will require storage of nm values for each target category; whereas
if a distribution is used which is specified by a mean feature vector and

covariance matrix - a total of n+n (n+l)/2 values must be stored. For example

if 10 features are calculated based on 100 images, this would represent a

15 to 1 reduction in storage requirements.

A simple statistical classifier is the Euclidean distance between features
normalized by the standard deviation of the feature. This effectively elimi-

nates arbitrary weighting of some features whose values happen to be large

compared to other features. The discriminate function for the jth target type

would be

S. =

where the ' denotes a reference value and Xi is the value of the nth feature.

The object is assigned to the category with minimum S 2 value. Confidence in

target classification can be improved if the sample feature vector X is

replaced by its mean i s more measurements are made.

The above d iscriminant can be improved if the correlation between features
is taken into account. This implies that the covariance matrix

c = I [(X'- ;1')(X' - ,)1]

is calculated so that the discriminant function becomes

2 (x- T 6- (X -')

where M is referred to as the ahalanobis distance. If in fact the features

have an n-variate Gaussian distribution

2

f(X) (2 ) 
/ I 1 12 -12 M

3-18

As t" -



then the Mahalanobis distance is an optimal Bayes classifier and the decision
surfaces becomes hyperquadratics. It is this property that makes it so desir-
able that the individual features have marginal Gaussian distributions. Thus
performance can sometimes be further improved if the individual features can
be transformed to be Caussian-like. One such transformation has been used
successfully at FACC to match the first four moments of the pretransformed
random variable. These transformations (Johnson mappingTDX - 3) are defined by

Z = Y+Ti In

Z = Y+TI sinli (xr

Z = y+r In (X-C )

where Z is Gaussian distributed with zero mean and unit variance. The choice
of which transformation is to be used depends upon the skew and kurtosis of
the original random variable X.

For many classification schemes several features are often important in
separating classes of objects so that only a fraction of the features set in
used to classify most targets. This hierarchical approach may require tests
of features or combinations of features but can often reduce the computation
time significantly for target classification.

One further capability could be built into the system to optimize the
final performance of a classifier. This would involve some scheme for reduc-
ing the feature space. The approach could be as simple as merging highly
correlated features or if some optimum subset of features is desired, the
distance between the clusters for each target type could be maximized for
c ombinations of features. There are many schemes available for selecting the
subset of features to be tested, none of which is ideal. However a commonly

used measure of the separation of 2 clusters with probability density func-
tions f and f. is the Bhattachara distance

B = f /f(X) f2 (X) dX

which for an n-variate Gaussian distribution has an easily calculable
formulation.

While it is felt that most target classification algorithms will not require
the sophistication of the complete approach just outlined, nevertheless some
subset of the algorithms will be used for all classifiers and the processor
must be flexible 2nough to accommodate the complex algorithms required of high
performance systems.

3-19



Current state of the art classification methodologies are easily handled by
the AAS algorithm simulator proposed by FACC. As an example, a preliminary
estimate of the throughput required by published techniques (References
AD-057-191, AD-060-849, AD-060-850) i, as follows.

a. Method A (Reference AD-057-191). In this approach, target classifica-
tion proceeds in two steps a fter the "superslice" algorithm has rejected the
object-like regions which are nontargets. In the first step (semantic classi-
fication), a set of ten candidate features, which can be calculated recursively
as pixels are accumulated, is used to preclassify each candidate objects as
targets or nontargets. They are easily calculated functions such as object
first and second moments, area, intensity first and second moments and so on.
If the candidate objects have on the average 200 pixels and if for each feature
an average of one add and one multiply per pixel is required then 2000 adds and
multiplies would be required to calculate all the features for one object. The
number of additional adds and multiplies required to calculate a linear dis-
criminant function is negligible and since the semantic classification involves
only two categories, simple thresholding is sufficient (i.e., only two compares
per object). Thus for this phase of target classification, the number of adds
and the number of multiplies for 500 objects is 106 per frame.

The throughput requirements for statistical classification are even less,
primarily for two reasons. First there are fewer objects remaining to be

classified at this final stage (typically 1/5 of the previous stage or less)
and the features are simple functions of the features used in semantic classi-
fication. Assume for example that 11 new features are to be calculated, each
requiring say 10 adds and 10 multiplies (actually no features require this many
calculations) and that on the average two decision nodes are exercised for each
target and that a quadratic discriminant function is required at each step.
Then if there are 100 objects to be classified only about 50,000 multiplies
and 25,000 adds will be required. The total computation burden for the
Method A classification approach is on the order of 1.1 x 106 adds and

multiplies per frame.

b. Method B (References AD-060-849, AD-060-850). In the Method B approach

object classification takes place in 3 stages: clutter rejection classifier,
recognition classifier and interframe decision smoothing. Six very simple
features are used in the clutter rejection stage where threshold test-
ing is done. Making the same assumptions about object size and feature com-
plexity as was done for the comparable stage of Method A the number of adds and
multiplies required to classify 500 objects would be roughly 6 x 105.

AThe four moments Vll, 002, 02, and 1103 are typically used for the recogni-
tion classifier stage. This will take less than 1000 adds and 1000 multiplies
per feature. Classification is performed by determining the category of the

K=10 nearest neighbors. If the Euclidian distance to all features of a
training set containing say 250 vectors were calculated and then sorted the
average number of compares would be less than 105 per classified object with

3-20

,..k

.--



the number of adds and multiplies required for distance calculation being
2000 and 1000 respectively. For 100 objects, the number of compares required
for sorting would be on the order of 107 and the number of adds and multiplies
for all the classification calculations would be less than 106 each. We note
that if the K nearest neighbor (NN) algorithm is replaced by a fast NN
algorithm where the training data is presorted in hierarchical fashion as
advocated by Method B then the throughput requirements for the recognition
classifier drop considerably.

The final step of interframe analysis of the classified target string involves
updating the estimate of the aposteriori probability of correct target identifi-
cation on a frame by frame basis using Bayes theorem. If for example there
are 6 possible target categories and each target is classified say for 10 frames
then the total number of adds and multiplies for 100 targets is only on the
order of 104.

We see that the total throughput requirement for the Method B classification
scheme is on the order of 107 operations/frame and would probably be much less

than this for any fast NN algorithm actually implemented.

3.1.2.5 Nonintelligent Target Tracking (C.II, C.IV). Current target tracking
algorithms may be divided into three basic types:

(1) Centroid or hot-spot trackers

(2) Correlation trackers

(3) Feauure trackers

A hierarchy chart of trackers is shown in Figure 3-6. Centroid trackers
(type 1) are the best developed and have been successfully demonstrated on many
programs, including FACC's BCD program.

The type of filtering that any good tracker (centroid or otherwise) should
have is updating and filtering of the error signals. By "updating" we mean
that we recognize that because of read-outs, calculation time and various
propagation delays, the error signal obtained applied to a time which may be
as much as 30 msec prior to real time. Velocity filtering can be used to good
purpose when a target approaches another bright object.

Correlation tracking (type 2) is often used when the target fills or exceeds
the field of view. In addition this type of tracking is inherently more accu-
rate than centroid. Correlation tracking suffers from two problems: (1) it
is computationally expensive, and (2) when the object's apparent size is
rapidly growing this type of tracking becomes increasingly open-loop since
frequent "reference updates" are required. Hence, one encounters:

I
i 3-21



LN
cm

Z uj
N

0 LL z
U i ir cc G*w u w 0 CC

uj w 08 P U. wcc LU U cj 1 19 zLU w Ne ui 0 ccco 0 w " ou 00w 00-i ujujca 0 j A0 Z
0tu

U) C.LiLU cccc < 2 1
D a

LL L

E-4

0
z

j
-j

U.

z 00 od

0 
Z u

ul

LU

cc

0 z
FA i L)

CL

crcc pe.j 0 0u u z
-1 -4

j CL TZ4
j

LL U)

LU w
LAI LLIIL W

CD
0
cc

LU
X

3-22



(1) Use of maximum gradient techniques to minimize the number of dis-

placements (i.e., correlations) that must be computed to estimate

the maximum.

(2) Use of sparse sampling of the target and template to reduce the
number of samples that go into a correlation coefficient.

(3) Use of other than classical (least-square) correlation coefficients,

for example the ,I (absolute difference) method.

The third type of tracker is based on recognizing some feature of the target
(e.g., fuselage and tail of an airplane, superstructure of ship).

Since the tracker in question must work for a large and unspecified class of
objects, such techniques must be restricted to "universal features", i.e.,

edges and corners.

Multi-mode tracking implies a tracking executive program which is able to

adaptively switch from one tracking mode (e.g., centroid) to another mode
(e.g., correlation) depending upon background, image growth rate, etc. A

throughput of one frame per 2 to 10 seconds is a reasonable upper bound for

tracking simulations. Any tracking mode to be evaluated in the field should
not operate at a rate slower than 10 seconds per frame, preferably not slower

than two seconds per frame. AAS will be able to accommodate these tracking

rates in either the correlation or centroid modes.

Tc get an estimate of the number of operations required we used the follow-

ing assumptions:

(1) Three objects to be tracked simultaneously.

(2) A gate size around each object not to exceed 64 x 64 pixels.

(3) 100% overhead over basic tracking algorithm to account for (a) track-
ing executive, (b) track file maintenance, (c) gate and position

filtering. Overhead is based on centroid tracking. Same overhead

applies to correlation tracking.

(4) In correlation tracking no more than eight correlation coefficients

need be computed. (More specifically, four iterations of Fitts'
method was assumed.)

The results show that the required operations per frame are

Method No. of Operations

A. Centroid 0.6 x 106

B. Correlation 2.7 x 106

3-23



3.1.2.6 Bandwidth Compression (C.IV). With a view toward reduction of computa-
tional complexity associated with a large number of data and size of the memory
for storing the data, to bandlimit the data over a channel with a finite bandwidth
and to transmit and process the information in real time with a secure and
reliable transmission, it is required to derive a scheme to represent only
relevant information with the minimum bit per pixel such that extracted infor-
mation will have a tolerable distortiun from the original image of interest.
The extraction of only relevant information has been described previously.
The amount of bandwidth required to store, transmit and recover the information
can be reduced by a) Transform Compress'on, b) Zonal Compression c) Threshold
Compression, and d) Predictive Compression. Zonal Compression and Threshold
Compression are part of our algorithms in extracting the information such as
target size, shape, scene description and etc.

a. Transform Compression. The inherent correlation of pixels in the
original frame causes the energy in the transform domains to be squeezed toward
the zero spatial frequencies. It is this characteristic of transformed images
that is exploited to achieve bandwidth compression. In addition, the princi-
pal components of a feature can be extracted by using Hotelling or Karhunen-
Loeve Transform. The following important fast transforms can be implemented to
reduce the bandwidth.

1. Fourier Transform. Let f(m,n) be the pixel value located at the (m,n)

position of the frame. The two dimensional Discrete Fourier transform is
defined by the transform pair:

N-1 N-n

F(k,V') I f(m,n) exp N J (m+n

f(m,n) = / F(k, ) exp 2

k=0 Q=0

where a square image of size N x N has been assumed as the size of the frame.

2. Waish-Hadamard Transform. The two dimensional Walsh-Hadamard trans-

form of order N = 2n is defined as follows

H = N-1/2 HN,

where RN is a Hadamard matrix of dimension 2n and is defined in a matrix form

F H[f]H

and

[fl = HFH

1-24

r "

4-. > |, i



whtre It I stands for the matrix of picture elements of the frame, F is the
t ri.n form ft I]

o. H~i,tr Urintoi rm. Let Ha be a laar matrix obtained by sampling the set

, I l lhCt ini. rhe Haar transfoim pair is given by

- I

N H Vv)

nit I rinn-torm, Let SN denote the N by N slant matrix with N 2

7 1, T I cT 1- Tir ;) ir is given by

N N

':~tu v) SN

,ill' Trinstorm. Let transform matrix be written as

- N !- k , 1

I, when 0 , K = 0
w t' t k, -

COS (2K+I)1 K = 0,1,..N-1,
S2N Z = 1,2,..N-1

eh two dimensional discrete cosine transform may be defined as

I lu,,,,) I = c I JC'

and the inverse transform is given by

f] = C' F(u,v)C

where C' is the transpose of C.

6. Number Theoretic Transform: The two dimensional number theoretic trans-

form is written as follows

,NI N

f(u,v) f(x,y) ruX r
y

x=O y=O

3-25I



The inverse transform is given by

NI-- N2--

f(x,v) N N 2 4 . F(u,v) r 1 r v y

u=0 v=O

where N1 and N, are generally powers of 2 such as 256, 512 or 1024 and

N

r 1 i Mod M
I

N,)

- 1 Mod M

F i l r_ s i 'ir rI !iiiJ I t ,r ,]'r , nJ N respect ively.

.K irlthtl -I,] ot".:' I r-i !tt l. t R ::,np',1l b the' siutocorrelation
un 't [,sn ', f !- , t~t i

R1 '1 , 1.,i trt) itl

S' i , :, 't it in-

t i

:11<l {7 ' t lt' , 'Tl': i , I i it the:' til ]{ ' rt et, lL,\  m t

N- 1 ,_ -

{( t ' : ' / , ' , < ] ii ,t , V l,1ii LIIL' lllt')COFIrr I, l it n matrix
t I ' 1 -, 11 -

PI I . i. Xi s I t I i -I I- Ts a r i a y IeC e I.

l it'l h ii1 lit iii i 1 oiig Ii s511 1i 0 I i s, i ke I \ ti h live t he same vaIlie.
ti ii ii gt it tel I' toin hi im i Xj- - ii Whereas the pixel

I , Itie'v l o t.I v IS i t li m i~s n ist l j Wcent p'i xe I di t ferences
I r c 1 .11 1 n t 111 it) 1 t 1 1 1 k\ kI VA %-1 1 it . I, 'd It t lhe ' O \se d va 1 u"

-- L S t 1 ) S- *-

! I F 1 1 tl t I t I t j i i , , k -Is I dt t l e

i1 F,,v X- ' (:,,) , '~ ,

l BV

II
,,4-,~" -



J = x~j + (I - 1) M

where M is the mean gray level and c is the normalized correlation between the
adjacent pixels. Let

d. = X. - X., for all j

tie remaining problems are to quantize and code the differences {d.1.

1. Differential Pulse Code Modulation (DPCM). The DPCM system uses the
previous element to predict the next pixel. The transmitter predictor computes
the error between the actual picture value and the predicted value. This error
signal is then quantized in a coarse nonuniform manner and transmitted. The

received error vac [i is added to the p revioUs predicted value, delayed and m
possibl v att ,nna ted to form the next predicted value in the feedback loop.
The quantized output may then be binary coded for error correction and trans-
mitted over the channel.

2. Advanced Intelligent Compression. Algorithms to extract the target
size, shape, edge, contour and classification utilize very sophisticated
methods which could enable us to compress the data significantly. For example,
we used these methods to detect a ship in a background of ocean water, sky,
cloud and other associated noise. The ship's location and size are important
information, not the cloud or ocean pixel value. The entire frame is of
512 x 512 pixels. Each pixel varies 1 to 255 gray level. The only relevant
information is pixel location (row, column) and size. The compression of
information is 512 x 512:3. The advanced compression scheme will use image
coding techniques to further reduce the bandwidth and enhance the privacy of
the message. These schemes include Huffman coding, Run Length coding, Inter-
frame Transform coding, Interframe DPCM coding, Hybrid Interframe coding and
BCH coding, and the new technique of image scrambling.

In general, for an image size of N x M pixels, the transform coding requires
N2M2 operations. However, the fast transforms require NM/2 1og 2 NM operations.
The predictive coding requires 2 NM operations. For N = 875, M = 1024, the
transform coding requires 8 x 1011 ope rations and the fast transform requires
less than 9 x 106 operations and the predictive coding needs about 2.0 x 106
opera t ions.

3.2 SYSTEM BASELINE DESIGN DESCRIPTION (SOW)

The following subsections present a detail description of the proposed base-
line design for the Autonomous Acquisition Simulation system architecture,
hardware, and software.

3.2.1 SYSTEM ARCHITECTURE

The system architecture which fulfills the requirements for the AAS system
must have a unique blend of hardware and software functions. The requirement
of near real time execution of complex image processing algorithms implies the

-3-27

, !-



necessity of fast hardware circuitry with parallel and pipel-Ined processing
I ei tare ci hie0 eXeCCLit in) b haSic compu tat ional1 tasks germane to image pro-

Le~sinig techique~iis such Ii sstliehlJ tg generation and high pass/low
pass f i It e rilag . I'l he re~ Lii Ii!1' t of S i muLit ion Of diverse image processing
si Ivr i t hms , MS ! sor sotit la re Lies in that permits the prospectivye AAS system
ISer to Iri'ialnriiisin sI high l evel language and that has the capability

of trinsit inn. thtiese ii n!or it mils inlto maLIchine code which can flly1 exploit the
speci at harwir Ieittr S espc 1811% d Les igned for the s imul a t or . Also thle
svsttiii irchi lecture Shouild he Such that it is able to aiccept any new hardware

sidsslcSHsch ais spec ii puirpose L.S chiips or denser memiory chips, this will
prcevent ol'so I eSCenICe in the ta St chianginag world of semiconductor integration.

lie S-VSteiiI Sircllitet'Cire Shiouild have gro,,ith capabil it ies since it is certainly
rio t li it as, ouir Li der Sta ad ing ofI image processing increases, the complexity

ot Ii Inor i t hmcs iceaises prop)Ort innal I V MInd thle proposed simulator should be
Il)te to0 handIe t he0111 S I ti ;sIC to0ri11V .

A sv i-t em :i rehi teet ui ci li it i st i sf i sall1 these requ irement s is currently
no0t AVAu i 1,1111 as ISoffI-t he-shel1 I t"eqii ipment . Svstemi architectures designed to
hAnI I L' mn pt rocee sini at;ator i t hurns Spec iit i cal I v tend to he spec iaIi zed in terms
of What ii "or ithils t he", canI pertotrn,. and lack growth featulres. Almost all

cci o. i nl rnoi-c oflltil t r sVs teLns cain Silmu ist e the image proc essing a lgor itins
i stel! inl the 10 C0)'lioweverc t 1eY do not either sat isfy the size constraints or

I let t 1tr equi iremeit t Thus We P ropo se a new architectutre specific ally
d LS ini11leI for t Ile sui~li lit or-W1 hichl aIt tendslt to a11 the reqti irements called for .

I'IL' rneilar ii tec' tretI i !s presen1t eLI in i tgucc 3 -7 . The svstem controller
uIanleslt tie interfaice betwetlii the xteniIworld and the processing complex.

lthe Coat rol Psnl iris thle prov ision to aiccommothate mlachimne code generated for
thcile aI or ithins to I)(s ;iinikited by ;i lhP-] 1 maichine in the lahoratorx'. Th e

o Int ro r0 t, IcSo r C oo rdi Ii t e I; lie comipitat ion of tile Video preprocessor and the
ec) 1 'd1 i i it , I I i ~C 0 o lc esr (lhSDNl) . The Video Preprocesso (VPP) is

Ia Iv I es V L III to 0 11iiitl I C th ana Io g -t o- d ig itaI in te r f ace ( suic h ;ais syvn c
st ri pp in. , i nit iraI ion Ind s tor ian, I ramies ig ital I v in) the Frame Memory) and

i IpIlIii t. i d(i I andrIo i e i g, hho r l o oh p i e I op era It ion 1s . T "vpica I operations it cs~fl
Ii t-( tc ire I ir i-deli ag) li~jIT a rI t i on, I rsinie suimma t ion/d if ference and edge

o;pra t ions,- (t,. I- . , Nobert t, Misk, Mohel Ma1isk ,Lap lac ian Ma-isks, etc.)

T ILi hI SlD,,Is are CC a pai h 1 e of nr T1 I en )s r I I and1 ( ciomp I ex ope rat ions. They are
10eSi ntl dto ljinu I(I, Ic-( sicqts it i on1 1 silo I i Is l (such ats mait chled f ilIters) , extract

sib1imge, p )e rfIorm c o -c I :Iat ion mu - compute imaIIge fIeatures l ike histograms
ind moment invai r ants-. Tlue lHSDhs sire ilesiInied to be inadepend en t and execute

(I it feIrent iastrii t ion,, sit the saIme, t i11c . AISO if onle deC ide's to replace the
l1Sl)M wi tli iai-LIWsIre of l i s, ova des inni, thei sirchi itot'tiire icS designed to fac ili-
tate t hi withI it s siddilcoss onI"tt0 rold ail dta St iIlCt Ure,-

The Framc Memory is capable of expansion tip to 1 ii. gabytes of storage per
9 frame (foujr frcames maximium). Data sind Control P-ths a, designed so that the

HISLMs and VPP can operate independent ly. The di, lay monitor is used to view
raw data, pre-processed data and gate/symbology type of information



0H

CL'

C)-

00

CC.

0 uo020
0 LxI,
CLc



AD-AI95 709 FORD AEROSPACE AND COMMUNICATIONS CORP NEWPORT REACH -- ETC F/G 19/5
AUTONOMOUS ACQUISITION SIMULATOR AND ASSOCIATED DATA (AASAD).(U)
JAN 81 S R KING, H MACK, A W MATHE DAAK7O-80-C-0235

UNCLASSIFIED NL

22Iflflfflflflfllflflflf

Sllflflfllflllflflfll

EEIIEIIIEEIIEE
IIIIIIIIIIIIII
ElllllEEEElhhE



[
The entire processing complex is designed for image processing tasks and

hence to exploit fully its hardware capabilities, special attention is paid
to macros that implement these tasks on the hardware. The macros are designed
to be general and perform tasks such as histogram generation, image correlation,
extraction of image subfields, etc. To specify image processing tasks, one
uses high level language with subroutine calls and the System Controller con- -
verts these calls into macros and pointers to subroutine arguments.

Each individual processing element of the system is discussed more fully in
the following subsections.

3.2.2 SYSTEM HARDWARE DESIGN (SOW)

This subsection contains a detailed description and statement of work for
the baseline design on the proposed Autonomous Acquisition Simulator (AAS)
System processing hardware. This baseline has been derived primarily from the &
results of a current and on-going internally funded program at the Aeronutronic
and Western Development Laboratory (WDL) Divisions of Ford Aerospace and
Communications Corporation.

The internal program at the Aeronutronic Division is formally known as the
Digital Imaging Search and Track Independent Research and Development Program.
This is a multiyear program whose major objective is the design and development
of a processor called the Modular Video Image Processing System (MVIPS) and
whose basic design meets or exceeds the current requirements for the AAS sys-
tem. As currently conceived, the MVIPS design includes the baseline design
for the Digital Video Preprocessor (DVPP), the High Speed Digital Microprocessor
(HSDM), the digital Frame Memory, and Associated System Interface modules.
Figures 3-3 and 3-9 are photographs of the MVIPS hardware excluding the DVPP
which is currently undergoing system tests and integration in the Digital
Laboratory at Aeronutronics.

The Digital Video Preprocessor is currently in the final design stages and
it is anticipated that this module will be fully tested and integrated into
the MVIPS prior to the initiation of the AAS program.

Finally, an optional addition to the baseline design, called the Integrated
Memory Processor is currently fully operational at FACC's WDL Division Labora-
tory. It should be noted that as currently designed, the IMP meets or exceeds
the AAS requirements for two-dimensional filtering, convolution, correlation,
etc., in almost real time.

Because of the maturity of the designs for existing hardware and the fact

that this hardware meets most AAS program requirements, the approach for the
hardware design for the AAS program is to use the existing MVIPS design as the {

J baseline design for the AAS program and to anticipate minor modifications of

*3 3

1'3-30



Ta

Figure 3-8. MVIPS -Demonstration system

Figure 3-9. MViI'S sequencer and address generator

3-31



this design as a result of the system architecture review task during the very

early stages of the program. Moreover, this approach is considered to be one I
of low technical risk while meeting the AAS piogram objectives. Of course,

there will be some new electrical and mechanical design such as that associated

with the control panel, laboratory program load module, and packaging to meet

the helicopter environment. However, these tasks are considered low technical
risks because of their corresponding straightforward designs.

The following subsections outline the details of the baseline designs for
the AAS hardware.

3.2.2.1 AAS System Design Summary. The AAS is designed to be a modular state-

of-the-art, high speed realtime image processing system. Maximum use of
parallel and pipeline architecture is employed to achieve the processing
speeds required for nonrealtime system such as AAS. The design is modular
in the sense that additional processors may be added in a parallel lockstep
instruction - SIMD (Single Instruction Multiple Data stream) mode or in a
parallel asynchronous instruction - MIMD (Multiple Instruction Multiple Data
stream) mode to meet the requirements for realtime processing of the AAS algo-
rithms. Furthermore, the requirements for these additional processors have
been anticipated in the baseline design and as a result these processors may
be added in the future without major modifications to the then existing
hardware.

The baseline design for the AAS hardware accommodates the requirement for
a High Level Language (HLL) by incorporating a commercially available pro-
cessor, the Digital Equipment Corporation LSI 11/23 that already has a very
large software support base. This support includes many HLL's such as Pascal
which has been selected as the HLL for the AAS program.

The AAS hardware is designed to contain a total of nine functional sub-

systems as shown in Figure3-10 and are as follows:

(i) System Controller

(2) High Speed Digital Microprocessor

(3) Digital Video Preprocessor

(4) Frame Memory

(5) Graphics Display Controller

(6) Control Panel

(7) Transportable Memory Loader and Fixture (Lab Program Loader)

(8) Integrated Memory Processor (Optional, section 3.3)

(9) Analog Video Processor (interface provision only)

'-

• 3-32



r --- i-.

1F- EJ1
-- I* -- W .. L.. I

Z21j

0 0

cc LU

Z 0
L-4

zH
x 0 C

U4
ccE

*1 m Ma-

iic
0. 

RA.h

3-331



It should be noted that the baseline designs for the AAS program will
include the System Controller, High Speed Digital Microprocessor, Digital Video

Preprocessor, Frame Memory, Control Panel, Transportable Memory Loader, and
Graphics Display Controller and associated system interface hardware. The
Integrated Memory Processor is included as an option only. Analog Video
Preprocessor is not included in the baseline design or as an option, however,
the baseline design does include provisions for interfacing an analog processor
to replace or operate in parallel with the Digital Video Preprocessor.

The designs for these functional subsystems are described in detail in the
following subsections.

3.2.2.2 System Controller (B.4). The System Controller subsystem will function
as the basic controller and computer for the proposed AAS. Its principle func-

tions will be as follows:

(1) Provide for high level control of AAS,

(2) control architecture of AAS,

(3) provide firmware or read only memory (ROM) for the AAS operating
system,

(4) provide Random Access Memory RAM) for application program,

(5) provide interface support (hardware and software) for external

control signals, and

(6) provide the AAS with a basic computational capability, e.g.,
floating point operations.

The Digital Equipment Corporation (DEC) LSI 11/23 Computer has been selected
as the processor to perform the System Controller function. This processor
has been selected because it is software compatible with NV/EOL DEC PDP 11/70
as well as the DEC VAX 11/780 which is currently being acquired by Aeronutronic.
This will insure that AAS program has adequate software development support at
both the contractor's and customer's facilities without the purchase of
additional equipment. This selection also allows for advantage to be taken of
the widely available software (e.g., Operating System, Compilers, and Utilities)
for the DEC LSI 11 in order to reduce the cost and technical risk associated
with potentially very costly software development tasks.

The selected LSI 11/23 has the following features which will be used to meet
the requirements of the AAS programs:

,J (1) DEC PDP 11 family software compatibility

(2) Small size(Four 5.2 x 8.9 in multilayer boards)

(3) Memory management, i.e., software controllable extended addressing,

and memory protection

3-34



(4) Floating point arithmetic instructions

(5) Vectored interrupts

(6) 8K Bytes of ROM memory

(7) 48K words (16-bits) of RAM memory, optionally expandable

The organization of the ''1 11/23 or the System Controller memory is shown
in Figure 3-11. The ROM memory section is basically the system firmware and is
designed to contain the DEC LSI 11 Operating System, subset of the DEC utili-
ties program, the Pascal P-Code interpreter, the MS Executive Software, and
the MS utilities and diagnostic softwarn. This software will be loaded in
PROM and will be delivered with the AAS system. The random access portion of
the System Controller's memory is designed to contain the user application
code. The System Controller is designed to accept application programs from
the Transportable Memory Loader as shown in Figure 3-10. The baseline
system will contain 8K Bytes of ROM and 48K words of RAM.

fI

4 i

I
II

3-35

-,. |



DEC LSI It
OPERATING SYSTEM

DEC
UTILITIES

PASCAL
- HLL

READ-ONLY
PROGRAM MEMORY
32K
I16SIT WORDS) AAS

EXECUTIVE A
SYSTEM

_______________________AAS USER
APPLICATION
PROGRAM

AAS
UTILITIES

AAS

DIAGNOSTICS

DEC VAX II
OR
DEC POP II

AAS

APPLICATION
RANDOM-ACCESS PROGRAM TRANSPORTABLE

PROGRAM MEMORY MEMORYS49K 
LOADER FIXTURE

116-BIT WORDS)

'1 
03-.30

FIGURE 3-11. SYSTEM CONTROLLER MEMORY ORGANIZATION

3-36



3.2.2.3 Digital Video Preprocessor (DVPP) (B2) (B3) (B4) (B5). The Digital
Video Preprocessor is included in the baseline design for the AAS; its major
functions are video input/output processing and high speed video preprocessing
operations. The video input/output processing includes the analog-to-digital
conversion of 525 and 875-line tv format data, video sync stripping, line drop-
out compensation, and digital-to-analog conversion of digitized video data for
output to 525 or 875-line tv video monitor. The video preprocessing functions
for the DVPP consist mainly of those image processing operations where
typically the same arithmetic operation has to be performed on every pixel
within a video frame and in realtime. Included in this DVPP design are the
operations that would normally be performed by front end analog processing
in the more conventional architectures for autocueing/screening processing.
Furthermore, the digital approach to the preprocessing has the advantage that
it is very flexible and easily expandable. This will enable the proposed AAS
to meet future algorithm simulation requirements with minimum modification to
the baseline system. Finally, many of the digital implementations of pre-
processing lend themselves readily to VLSI desitn, and therefore, advantage
can be taken of this rapidly evolving technology in the near future to reduce
the size, weight, and power requirements by orders of magnitudes.

In its current configuration, the DVPP hardware is arranged as a group of
special function modules that digitize the video data and perform the arithme-
tic operations on the data as commanded by the configuration controller. Each
special function module is contained on one or more wire wrap circuit boards,
7" x 15" in size. The modules are interconnected and connected to the memory
by control and data buss's contained on the back panel. Modularity in design
and spare card slots in the chassis provide for expansion or change of func-
tion by a simple addition or exchange of circuit cards in the chassis.

These modules are defined as:

e Video I/O 2 cards

e Configuration Control 1 card

9 Variable Matrix 1 card

, * Threshold and Binarization!iI I card

3 Frame Sum/Difference

* Video Mask 1 card

a. Overall System Functional Organization. The overall functional organi-
zation of the Digital Video Preprocessor is shown in Figure 3-12. The principle
sub-functional elements of the DVPP are the video input/output, system configu-
ration control, and modular video preprocessor functions. The DVPP system is
essentially designed to accept either 525- or 875-line tv format analog video
data as defined by the configuration control processor. The sync signals,

A namely the horizontal (line) and vertical retrace (field), are stripped by

3-37

A,



40 -

4> 4>

Lu 0

00U.

4~ 0.

U. 1.

o o

7UU
0 cc 2 )

2 0

0 0

*c 0 1~ -4

Zl I
04j

1I, . 3-38 M



1.W,

the timing and control section to generate timing and control signals for the
AAS system. Internally, the DVPP digitizes the analog video and processes
the data in realtime using dedicated software selectable and controllable
preprocessor modules. The system is designed to output two separate processed
or unprocessed video data streams in analog form to a 525- or 875-line tv
monitor or in digital form to the AAS frame memory. Capability is also pro-
vided to read data from the frame memory and process the data again (at
video rates) with the preprocessors to facilitate recursive operations. 875-
line processing requires that frame memories be configured as 1 megabyte I
memories.

Finally, the DVPP is designed to output unprocessed analog video to an
external device and accept the data from the external device to allow the use
of analog processors in a cascaded or parallel mode with digital preprocessor
modules, i.e., the data from an analog processor may be sent directly to the
DVPP analog video section, or the data may be digitized, optionally processed
by a selected preprocessor and then sent to any combinations of the analog
video outputs, frame memory, or fedback to a preprocessor.

The following paragraphs describe the subfunctional elements of the DVPP
in regards to their function in the system.

b. Video Input/Output Subsection (B2) (B3) (B5). The detailed functional
block diagram for the DVPP Video Input/Output subsection is shown in Figure

3-13. This design provides for the following features:

e Input 525- or 875-line tv format data from any source, e.g., FLIR, tv
camera, or video tape recorder

9 Controls gain of input video amplifier to increase dynamic range

e Inputs for external video sync signal

e Outputs data to an external device for parallel or serial processing
with DVPP preprocessor function

e Inputs analog data from an external analog processor

e Generates AAS sync and blank signals from input video or external
sync signals

9 Digitizes analog video up to a 25 MHz rate at 8-bits per sample4 Outputs digitized data to the DVPP preprocessors and the internal ID~and IE buss's.

, Outputs 525- or 875-line analog video up to two tv monitors

e Output Analog video is selectable from output of A-to-D converter,

input of A-to-D converter, and the DVPP internal ID and IE buss's.

e Mixes character and graphics data with analog video

3-39

i . 4 zu lilI n l nii iI li l - '



-44

;-4

3-400



It should also be noted, internally the Video Input/Output subsection
inputs video data in 16-bit format (packed two samples/word) where it may
be placed on the internal ID or IE buss's. Similarly the Output section may
output data from the internal ID and IE buss's. Since these buss's are also
connected via buffers to the Frame Memory, input data may be easily
sent to the Frame Memory and output data may be easily extracted from
Frame Memory. Moreover, these data paths selection are software controllable
thus allowing for maximum overall system flexibility.

The internal clock of the AAS system will be synchronized to the incoming
composite video or separate vertical/horizontal sync signals. Frame rate of
60 hertz ±2% will be accepted. Horizontal and vertical sync will be recon-
stituted after going through each section of the preprocessors so that frame
stabilization will be accomplished.

Sync dropout compensation (B3) will include one horizontal line buffer to
s''re the data of the previous line which will be used in place of the present
line in the case of one sync dropout. In case two to eight consecutive syncs
are missing, flags will be sent to the configuration controller to delete the
processing of those lines for the present field. In case of nine or more
missing syncs, the present field will not be processed.

Four configuration controller selectable, gated synchronous start oscil-
lators are provided to accommodate the 525-line and 875-line sampling rates
plus two optional rates.

c. Configuration Control Processor. The Configuration Control Processor
CCP is designed to generate the basic control and configuration information
and signals for the following AAS subsystems:

* Digital Video Preprocessor

o Frame UI'emory

o Graphics Display Memory

For the DVPP, the CCP controls the following subsections:

e Each Video Preprocessor Module

* Input Video Amplifier

9 Internal DVPP Buss Assignments

This control flow is outlined in Figure 3-14.

The Configuration Control Processor receives the basic control information
from the AAS Control Processor as shown in Figure 3-15. This control takes
place via a buffer RAM memory referred to as Configuration Control RAM (CCRAM).

3

3-41



CA j # C

Zo 0.

0ow 0w00L

U u cc

z1 z

~i20 00

00

-4

z

4 a:

j 00

2iIL LLW C LL
4Z 0W z.0L

>a 204 U L C F z0

012

a0

02

0 w Z

U.1



PROCESSOR

CONFIGURATION

CCONTROL Bus

TOLCONFB

SUB-SECTIONS
V -N TRANSFER DESTINATION
VSN' - E COUNTER ADDRESS•

SELECT
DECODE

FIGURE 3-15. CONFIGURATION CONTROL INTERCONNECT

The contents of the CCRAM is burst loaded to the configurable subsections,

starting with the leading edge of vertical blanking. During this burst load

period the CCRAM receives sequential addresses from the transfer counter.

During active field time the MVIPS Control Processor is free to randomly write

data into the CCRAM via the A Bus. Once the AAS Control Processor has ini-

tialized the CCRAM, upon power up, it is only necessary for the AAS Control

Processor to update the parameters that require change on a field to field
basis, for the parameters that do not require change remain in the CCRAM from
field to field.

Most of the front end (preprocessors, etc.,) are also reconfigurable on a

line by line basis, to some extent. This line control is provided by a bit

slice configuration control processor in much the same manner as the Graphics

Control Processor Controls display.

d. Video Preprocessor Subsection (B2). The video preprocessor subsection

is the main computing functional element of the DVPP. In general, this sub-

section is actually a series of processing modules that are designed tc perform

functions such as the following in realtime:

e Frame (field) summation/subtraction

* Compass mask

i3-43



II

" Laplacian mask

" Roberts mask

" Low pass filter (two dimensional)

* Sobel operator

* Thresholding

" Neighborhood processing (thinning, etc.)

Moreover, the DVPP is designed so that each processor may be incorporated
into the design in a module fashion, i.e., all necessary control signals are
available for additional preprocessors and other subsections of the DVPP
do not have to be modified.

The standard input and output signal format for each preprocessor is
diagrammed in Figure 3-16. Also, it should be noted that the selection of
the optional input sources and optional destination of the processor output
is under the control of the Configuration Control Processor. Included among
the possible configurations is the ability to feedback video data that has
already been processed by a preprocessor. This feature alone with the
capability of modifying the configuration of a preprocessor during vertical
retrace time makes the DVPP a very powerful tool for implementing large two-
dimensional or recursive filters in almost realtime for the AAS baseline
design.

The baseline design for the Video Preprocessor subsection for the Digital
Video Preprocessor will contain the following features:

* Preprocessor Video Configuration Control

* Threshold and Binarization Preprocessor

e Variable Matrix Preprocessor

e Video Mask Preprocessor

The features are described in detail as follows.

1. Preprocessor Video Configuration Control. The preprocessors are capa-
ble of 25 MHz throughput and are dynamically reconfigurable at field rate.
Each can accept its incoming data stream from one of several sources of

"4 data, i.e., Input Video Data, another preprocessor or a previously stored
frame or field of data. Each of the preprocessors is capable of individually
selecting a starting and a stopping point between which it will accept data
to be preprocessed, i.e., a row and column number is loaded into the pre-
processor from the configuration control RAM, for each the starting point

and the stopping point.

3-44

• .o

-I I I I I • I I I l i I I I I I I l I I I l I I I -



16
REAL TIME DIGITAL

INPUT VIDEO

OTHER PREPROCESSOR OUTPUT/ 16 VIDEO (FRAME MEMORY/
FRAME MEMORY OUTPUT/ PREPROCESSOR PREPROCESSOR INPUT/16 ANALOG VIDEO OUTPUT/

CONFIGURATION CONTROL
SIGNALS

03-5-42

FIGURE 3-16. STANDARD PREPROCESSOR INTERFACE

The preprocessors reconstitute the timing signals input to it, so as to
compensate for internal processing time. These reconstituted timing signals,
with output data, may then be routed to a second preprocessor which will see
data and timing as if it were coming from digitized video input. Utilization
of this method of timing and control allows the ability to add additional pre-
processors as they become identified. All reconstituted signals are digitally
timed and synchronized, i.e., no one shots are utilized. Also, this method
provides the ability to input data of different rates without the need to
"tweek" the timing and control logic.

All preprocessors may be reconfigured at a field by field rate. Configura-
tion control is received directly from the Configuration Control RAM, in burst
mode, each vertical blanking at field. However, certain preprocessors are
also reconfigurable at a line by line rate. The line by line configuration
control information is passed during vertical blanking, in burst mode, to the
preprocessor configuration RAM. The preprocessor configuration RAM is then
available during field time to the configuration control processor. This
processor, in turn, makes the necessary calculations for control of each of
the preprocessors on a line by line basis. Refer to Figure 3-13 for a block
diagram.

3

4.34



, I

Default configuration control is provided for all preprocessors. This
allows the preprocessor to automatically assume a selected mode of operation

for the start of each line as a result of horizontal sync, i.e., most all
discrete commands emanating from the command decoder may be selected to be
generated from horizontal sync.

2. Threshold and Binarization Preprocessor (TBPP) (B2). The purpose of the
TBPP is to implement the function described in Figure 3-17. Where the upper
limit (UL) and lower limit (IL) are set by the Configuration Controller, i.e.,

pixel value output 0 pixel in >UL, pixel in <LL

I or input data, otherwise

The TBPP also counts the number of pixels over the upper limit, the number
under the lower limit and records the x-y coordinates and values of pixels
within limits. This information is then sent to frame memory as determined by
the mode configuration. (At line, field or frame rate.)

The TBPP function, though very simple, is extremely valuable in the imple-
mentation of realtime acquisition algorithms where every field of the data
must be examined. By adaptively selecting UL and LL, the input bandwidth of
the data may be reduced by orders of magnitude using thresholding techniques.

PREPROCESSOR
OUTPUT

PREPROCESSOR
INPUT

A I,

UPPER

LOWER 
[M

LIMIT

03-5-43

FIGURE 3-17. TBPP PREPROCESSOR FUNCTION

3-46

I -.t... -



3. Variable Matrix Preprocessor (VMPP) (B2). The VMPP is designed to
implement a bank of 1024 low pass filters where each filter output is defined by

glJ =  
f ij

I,J

where

gIJ = filter output for grid location I,J

I,J = location of subsection of field/frame

f 'j = pixel within area defined by grid

The grid location and filter size are determined by inputs from the Configu-
ration Controller as shown in Figure 3-18.

The position of the grid relative to the area of interest, defined by First
Line, Last Line, First Pixel, Last Pixel, is configured by Pixel Delay and
Line Delay configuration. The grid size outlining each matrix is configured
by X Matrix Size and Y Matrix Size on a line by line, field or frame basis.
This allows variations in grid dimensions within one frame. The spacing of
the grid lines horizontal and vertical may be set at 1, 2, 4, 8, 16, 32, or
64 pixels or lines. Thus the dimensions of each matrix may be any combination
from I x 1 to 64 x 64 pixels.

[-- PIXEL DELAY

LINE AY -FIELD OR
y IFRAME OR

AREA OF
Y-* INTEREST

01Y2 -VARIABLE Y
0MATRIX SIZE

Y

x

x x
LVARIABLE X

• MATRIX SIZE
03-5-15

FIGURE 3-18. GRID LOCATION AND FILTER SIZE

3-47

S. . . . .' .. . . . .."... . ... - - , , . *,-= ,-,,.' .,m,., ,kf e , . , .. , m 
-- j



The VMPP module contains 1024 holding registers, each 20 bits wide. One
holding register is assigned to each matrix within the grid pattern. As each
pixel comes in, its coordinates identify the holding register and the pixel
value is added to the contents of its associated register. At the end of the
field, frame or matrix line the contents of each register is scaled from 0 to
12 places as determined by configuration and an 8 bit value for each matrix
is sent to memory.

4. Sum and Difference Preprocessor (SDPP). The function of the SDPP is to
simply compute the sum or difference for/between the output of the video
A-to-D converter and the feedback input to the processor from frame memory.

The operation mode is either the sum of the two pixel values divided by
two or the difference between the two values times two. The result of this
computation is output for distribution according to the Configuration Controller

5. Video Mask Preprocessor (VMP). The purpose of the Video Mask Preprocessor
is to implement the 3 x 3 convolution operation in realtime for cases where
coefficient in the convolution kernel are powers of 2. This may at first
appear rather restrictive, however a large class of common operations fall
into the resulting class, e.g. compass gradient masks, Laplacian, Sobel, and
Roberts. Moreover, this restriction eliminates the requirement for high speed
multipliers for the realtime implementation. The resulting programmable logic
arithmetic (PLA) lends itself readily to a VLSI implementation with a standard
cell being repeated many times within the design.

The Video Mask is implemented as follows: A 3 x 3 pixel array (Figures 3-19
and 3-20) is maintained in real time and under configuration control perform
arithmetic operations with a running overlap on the array as it advances
through the field.

Every pixel time the 3 x 3 array is as follows:

The nine pixel values are entered into a pipelined arithmetic pyramid. This
arithmetic pyramid is a nine step process so at a given point in time nine
sequential pixel arrays are being processed at pixel rate in real time. An
example of this arithmetic pyramid is shown in Figure 3-21.

The arithmetic pyramid contains 48 arithmetic units (some can multiply or
divide by 2, 4, 8, 16, etc., some can add or subtract) that are individually
programmed by the Configuration Control Processor at vertical sync time.
This makes the Video Mask a very useful and versatile module. Examples of
typical masks are shown in Figure 3-22.

3.2.2.4 Frame Memory

* a. Frame Memory Module (B4). The frame memory is organized as four frames
accessible to the multiport controller. Each page of memory contains storage

* for 256K bytes, e.g. a full frame of 512 x 512 video data. The configuration

of the four frames is completely controlled by external sources to the memory.

3-48

z.... ...



ARRAY ARRAY ARRAY

PIXEL PIXEL PIXEL LINE N-2
0 1 2

3 x 4LINE N-1

CURRENT LINE N

PIXEL7

PIXEL PIXEL PIXEL
COUNT COUNT COUNT
n-2 n-1 n

03-5-16

FIGURE 3-19. PIXEL ARRAY

During the vertical blanking time, the configuration control processor is
designed to handle the memory assignments via the multiport controller. Any
one of the four frames can be assigned to any one bus, any of the remaining three
frames can be assigned to any other bus. This configuration can occur during 3
each vertical blanking, so the entire assignment of frames to buses can be
revised after each field of data. This architectural approach gives the
memory great flexibility. This scheme allows frames of data to be input from
one source, accessed by other sources for processing and output to another
unit without complicated addressing changes. All that is needed to control
memory assignment is a few bits on the configuration control bus.

There is also considerable flexibility built into the addressing of the memory.
During the vertical blanking time the configuration control processor will

send data to control the addressing. Four parameters are sent for addressing-
starting x, y and final xy address. The starting address is the memory location
to be first accessed after the next start-of-frame. This scheme of addressing
greatly simplifies the handling of data. Any portion of the data can be accessed
without requiring separate addressing for each byte. The data is transferred

* immediately and the arithmetic units do not require separate addressing logic.
*This addressing scheme allows "windows" of data to be read from a frame without

A disturbing the original frame data. It also allows any interlace pattern to be
easily accomplished.

3-49

. ,~ - - -- .- .



A cII

x[jj

11

en]'I , 9. L4

x

C.,

' ! -4

.1

w.W.

3-50

f, AI-



-W- 71K

00

LuA
-J
4x

1-4

c.

'In

x

x

.1 ~ 3-51



-. -

tI

COMPASS GRADIENT MASKS

1 1 1 1 1 1 -1 1 1 -1 -1 1 -1 -1 -1

1 -2 1 -1 -2 1 -1 -2 1 -1 -2 1 1 -2 1

T -1 .j
-1 -1 -1 -1 -1 1 -1 1 1 1 1 1 1 1 1

NORTH NORTHEAST EAST SOUTHEAST SOUTH

1 -1 -1 1 I 1 -1 1 1 1

1 -2 -1 1 -2 -1 1 -2 -1

1 1 1 1 1 -1 1 -1 1

SOUTH WEST WEST NORTHWEST

II

LAPLACIAN MASKS

0 -1 0 -1 - -1 1 -2 1 1 0 -1 -2 1 -2

-1 4 -1 -1 8 -1 -2 4 -2 0 4 0 1 4 1

1 -1 -1 1 -2 1 -1 0 -1 -2 1 -2

2 3 45

2 1 0 2

-2 2 3 x 4 1 -

-1 -2 ±1 5 7

S-I-_--

0X -1~ WH R I X1 - 1 1 I 1- 1- 71 14 - 2

X-12 24 )+-1 10-12x3) 1 - 4 -

0 -1 0l) 2 -1+ 12x 1 i 1 I - 1 0 - 2 1 -

fof
%-



The memory has been designed so that it can be expanded in capacity. The
board is designed for I megabyte of memory. The basic operation of the memory
will be unaffected by the expansion, there will still be four frames assign-
able to four buses. The memory addressing will require additional bits to
accommodate the expansion.

b. Multiport memory interface control. The multiport memory interface
controller provides the steering logic and control of the memory modules.
This control is performed under the direction of Configuration Control, during
vertical blank time.

The steering logic provides the ability to connect any one of the four
frame memories to either of the two video internal data busses (Bus ID or IE) l
or either of the two processor busses (Bus B or C).

9
The two internal busses (Bus ID & IE) do not have the ability to address

memory, and therefore the Configuration Control, via the multiport memory
interface control, controls the locations at which data is stored. This
method of memory addressing allows for the most efficient means of utilizing
memory - both from the standpoint of access time and memory size.

3.2.2.5 High Speed Digital Microprocessor. The High Speed Digital Microproces-
sor is designed to meet the computational and data handling requirements for
acquisition algorithms that in genkral require a large number of operations
per pixel and which may not be easily implemented with dedicated digital pipe-
line hardware such as in the Digital Video Preprocessor. The typical algorithms
that the HSDM is designed to implement are as follows.

3-53



T'r

(1) Small to large two-dimensional recursive and nonrecursive filter

(2) Complex multiple task algorithm that may require concurrent process-
ing e.g. intelligent target tracking algorithms, auto-screening/
cueing algorithms, and intelligent image bandwidth compression
algorithms.

(3) Perform high speed (nanosecond) control and data transfer functions

In accordance with the objectives of FACC's internally funded program, the
architecture for the HSDM is designed to implement these algorithms, in par-
ticular the auto-screening/cueing algorithm, in realtime as might be required
for an operation system. This architecture as shown in Figure 3-23 is in
fact the architecture distributed processor that include both a SIMD and
MIMD structure.

The baseline configuration of the HSDM consists of a Control Processor (CP),
a Microprogram Sequencer (MS), an Address Generator (AG), and a Pipelined
Arithmetic Processor (PAP). A detailed description of each of the elements
is given in the following sections.

a. Control Processor (B.4) The Control Processor (CP) is a sixteen bit,
general purpose, microprogrammed machine using state-of-the-art LSI components.
A vectored interrupt structure is provided to allow efficient communication with
external devices. Two sixteen bit buses (the I/O Address bus (CPA) and the I/O
Data bus (CPD)) are used to interface with external devices. The CP includes
a scratch pad memory for storage of parameters and intermediate results, and
for I/O buffers. A hardware multiplier is provided for increased arithmetic
capability. A programmable timer is used to create interrupts at programmable
intervals. The block diagram for the CP is shown in Figure 3-24.

The CP microinstruction word length is 64 bits, microinstructions are
executed at a 7 MHz rate. Register to register type macro instructions are
executed in one micro-cycle while a conditional 'amp instruction typically
requires four micro-cycles.

I. Functional Description. The CP consists of two main sections, the
program control section, and the ALU section. The program control section
consists of those elements which affect the flow of control at the macro
instruction level or at the micro instruction level. Those elements, as shown
in Figure 3-24 are

9 Program sequencer

o Program memory

* Instruction register

* Microprogram sequencer

3-54



x LL,

0 Lu 0

CL F<Z

20

*L CL

41

0-

.4P

3-55C



UU U

wi

00 0L cw

X o'

rr - 4 0 c
w 4 w 00

)Y

4;D

N4t

m9 L

1 3-56 1

-cc



" Microprogram memory

" Vectored interrupt controller

" Programmable timer

The ALU section consists of those elements which perform data manipulation
and data transfers. These elements are:

ALU

Multiplier

Data memory

Address control

Bus interface

I/O address control

2. Proram _Sequencer and Program Memory. The Program Memory (PM) contains
the CP instructions. In the AAS system the CP has 32K words of memory, but
provisions for expansion up to 64K words are provided. Program Sequencer

(PS) controls the selection of instructions from the PM. The PS selects
instructions sequentially from the PM until an instruction is encountered
that selects an instruction to be executed other than the next sequential
instruction.

3. Instruction Register. The Instruction Register (IR) receives instruc-
tion words from the program memory. These instruction words are normally
used by the microprogram sequencer to select the appropriate microinstruction
sequence. For double word instructions, however, the second word is used as
an input to the ALU rather than the microprogram sequencer. This allows jump
addresses and immediate constants to be contained in the program memory.

4. CP Microprogram Sequencer and Microprogram Memory. The Microprogram

Sequencer (MPS) controls the selection of micro-instructions from the Micro-
program Memory (MPM). Macro instructions in the IR are used by the MPS to
select the micro-instruction sequence required to accomplish the macro-
instruction. The micro-instruction sequence may contain a single micro-
instruction (for example, register to register operations). Conditional
micro-instructions are implemented which allow decisions to be made dependent

.on the status from the ALU.

5. Vectored Inter-ipt Controller. The Vectored Interrupt Controller (VIC)
allows the program f ,,.' to be modified by external events not related to
program executions (for example the programmable timer interrupt). The CP
design allows the VIC to be controlled either at micro instruction level, the
macro instruction level, or a combination of the two.

3-57



6. Programmable Timer. The Programmable Timer (PT) allows repetitive
interrupts to be generated at a programmable rate.

7. ALU. The ALU is a sixteen bit unit consisting of 2903 bit slices and
carry lookahead logic. The ALU provides the capability to perform arithmetic
and logical functions. Also included in the ALU is a dual port register file
for data storage. The ALU provides the necessory logic to perform the divide
function. The ALU has two bidirectional buses and one unidirectional bus for
receiving and transmitting data.

8. Multiplier. The multiplier is a TRW 16 by 16 bit multiplier (MPYl6HJ).
The multiplier provides a 32 bit product in two micro-cycles.

10. Bus Interface and I/O Address Control. The Bus Interface and I/O
Address Control provide communication with external devices over the CPA
bus and the CPD bus. The CPD bus is bidirectional as is the Bus Interface.
The internal Y BUS may be transmitted to the CPD bus or the CPD bus may be
transmitted to the Y BUS. The CPA bus is unidirectional and is driven by the
I/O Address control. There are two sources for the CPA bus: (1) the ALU

B-BUS; or (2) the immediate operand of a two word instruction (from the IR).

b. Microprogram Sequencer (B.6). The Microprogram Sequencer (MS) is the
Microprogram address/instruction generator. It generates 16 bit addresses to
a nd receives 96 bit words from the Microprogram memory. The MS and the Address

Generator are initialized for each macro instruction by the Control Processor
via the Macro Queue. Multiple macro instructions may be stored in the Macro
Queue to be performed sequentially without disrupting the Control Processor.
Refer to Figure 3-25 for a block diagram of the MS.

1. Physical Description. The MS contains 130 integrated circuits. The MS
logic is implemented in TTL and ECL circuits and uses 35 watts of power.

2. Detail Description. The basic blocks of the MS are:

'4 (1) Macro Queue

* (2) Loop Counters

(3) Address Generators and Selection

3-58

NJ



LLmi

0

TTC T
zW

CC a

o O

uwj

I-.

n,-

z

0w 0 0

0 0

OC~ 40

LLf

I--

0 0

44

T T T T !-.
3-59



(4) Microprogram Word

(5) Control I

The Macro Queue is a 24 x 128 FIFO that is loaded by the Control Processor

with 16 bits from the CPD bus and 8 bits from the CPA bus. The bits are defined
as follows:

CPD 0 - 15 - Data

CPA 0 - 3 - Address - either Address Generator or Microsequencer

counter

CPA Bits 7 6 5 4

0 0 1 0 Address Generator 2901 #0

0 0 1 1 Address Generator 2901 #1

1 0 0 0 Microsequencer Counter

1 1 0 0 Microsequencer Program Register

0 0 0 0 Run

An "idle" signal from the Microsequencer allows the Macro Queue to transfer
data to the designated device. Run is the last instruction in each Macroinstruc-
tion. Several sets of instructions may be queued in the FIFO.

The Maco Queue may be cleared and reloaded at any time by the Control

Processor.

The 16 Loop counters and 16 holding registers are loaded with 16 bit words
from the Macro Queue. As each instruction is executed the counter addressed
by 4 bits of the Microprogram word is decremented. When the count in any

counter reaches zero it is reloaded with its initial count from the associated
holding register.

V The first address of the Macroinstruction is loaded from the Macro Queue
into the program register. When a "Run" signal is received from the Macro
Queue the multiplexer looks to the program register for the first address.

For subsequent addresses the Multiplexer locks to either the adder or the
counter. The adder adds the 12 bit 2's complement number from the microprogram

word to the 12 bit address in the program register. The counter provides an
address of the present address plus 1.

Except for the first instruction the multiplexer will look to the adder
3 for the address unless a condition identified by four bits in the microprogram

S 'word is satisfied. In that case the multiplexer will look to the counter for

the next sequential address. p
3-60

jIro-. . ZL.



The 20 LSB in the Microprogram word are used by the MS. They are defined
as follows:

0 ii Jump Count

19 18 17 16

0 0 0 0 = Unconditional jump
0 0 0 1 = Increment if addressed counter = 0
0 0 1 0 = Increment if AD 0 flag true
0 0 1 1 = Increment if AD 1 flag true
0 1 0 0 = Increment if PAP flag true
0 1 0 1 = Increment if AD 1 FIFO is full
0 1 1 0 = Increment if Data Ready signal
0 1 1 1 = End of Macro-Reload
1 0 0 0 = Subroutine jump*
1 0 0 1 = Return from Subroutine*
1 0 1 0 = Spare* 1101 = Spare*
1 0 1 1 = Spare* 1110 = Spare*
1 1 0 0 = Spare* 1111 = Spare*

15 - 12 Counter Address

The control section consists of the miscellaneous circuits for instruction
decoding, time and control signal generation and issuing interrupt and flags
to the rest of the system.

c. Address Generator. The Address Generator provides the two sixteen bit
addresses used by the pipelined arithmetic processors and 20 bit address for
the frame memory. The addresses are generated from the two sixteen bit high
speed processors. The two processors are capable of operating independently of
one anot',er. Programming of the two processors is provided by a forty bit
micro-instruction word. An additional address control feature is provided by
a skip command embedded in the micro-instruction word. The skip command
selects one of the two processor outputs for testing with a fixed constant.
The address is tested for greater than, less than, or equal to functions.

1. Physical Characteristics. The address generator contains approximately
90 integrated circuits, and uses 30 watts of power. It executes instructions
at x 10 Mhz clock rate.

2. Detailed Description. The address generator can be divided into three
distinct functions.

j (') Instruction Registers and Decoding

(2) Arithmetic Processor

(3) Skip Command Logic

.1 3-61



Each of these functions are discussed in detail in the sections following.
A simplified block diagram of the address generator is shown in Figure 3-26.

The addresses from the Address Generator are generated from a forty-six bit
micro-instruction word and three control signals. The micro-instruction are
latched to assure time for decoding of commands and directing of data. Pipe-
line selection is determined by the three control signals; RUN/HALT, IDLE, and
Macro Enable. The three controls enable four distinct modes of operation; RUN,
HALT, IDLE, and INITIALIZATION. The processors are on the RUN mode if none of
the three control signals are activated. The HALT mode is a front panel acti-
vated signal which allows the user READ only access to the sixteen internal
registers of one of the address processors. In the IDLE mode both address
processors are in a "NOOP" state and an address of zero is present. The
INITIALIZATION mode is a selectable preset given at the start of a macro
instruction string.

Each address generating processor is a high speed sixteen bit micro-
programmed arithmetic processor. The two processors use a 2901B bit-slice micro-
processor as its basic building block. Data to each processor is selectable
from one of two data sources, external input or data from micro-instruction
word. The processors can execute 16-arithmetic operations as well as perform
data transfer.

The skip control logic allows for the output of either address processor
to be tested for greater than, less than, or equal to conditions, when com-
pared to a test word. When the condition is satisfied, the skip flag is set
preventing the subsequent micro-instruction word from changing the contents
of the processor's internal registers. The skip flag remains set until the
selected condition is not met, after which the processor continues normal
operation. Six bits within the micro-instruction are used for the controlling
of the skip flag and testing word.

* The address generator is programmed via a 46 bit micro-instruction word.
The micro-instruction word is divided into several fields. For details of the
field refer to Table 3-5. Each processor is provided its individual six-
teen bit micro-code word. In addition the processor is also capable of passing
a sixteen bit data word from memory to the address latches. The A and B address
lines of CPUI are used as the most significant eight bit byte of the data word.
The low order byte is the A and B address lines for CPUI. The use of the
A and B address line for both processors in affect causes the program to pass
a data word through only one processor at a time. The data select bits are used
to select either the sixteen bit data word just described or an external data
word prescribed by the user. There are six bits dedicated to the skip logic.
Each central processor has two bits to determine the manner in which the skip
logic is used. The table below gives a functional description of the micro-
instruction word.

3-62



MICRO-INST FRONT PANEL MACROQUE RUN/
WORD IA ADD) CPU SADD HALT INIT IDLE

SEL
40 4 4

EN E N 1N2 
EN 3 IN STR

RUN HLT IDLE GUE SELECT
LOGIC

ENO ENI EN2 IN

DEST SKPO DEST SKPI

ED RLOGIC LOGIC X I

EXO I EI i

DATA DSL DATA

QUED 16 v QUED 16[CPUO CPUI

116

FUNC CONTROL
FUCLOGIC SP

TEST 2
SEL

ADDRSS VYAL ADDRESS ADDRESS
REGISTER ~FIFO RGSE

16 16 10 10 1

TAO ADO X-ADRS Y-ADRS ADI

TO VFM

IFIGURE 3-26. ADDRESS GENERATOR BLOCK DIAGRAM

3-63

t~e %. - --. -saw,.



L

TABLE 3-5 ADDRESS GENERATOR

BIT POSITION

50 - 51 CPUIl - condition of skip logic

52 - 53 CPUO - condition of skip logic

54 - 55 Test being performed for skipping

56 CPUI - data select

58 CPO - data select

60 - 63 CPU1 - B register address

64 - 67 CPUl - A register address

68 - 71 CPUO - B register address

72 - 75 CPUO - A register address

76 Write address FIFO

77 - 85 CPUI - Instruction field

86 - 95 CPUO - Instruction field

d. Pipelined Arithmetic Processor (B.4). The Pipelined Arithmetic Processor
(PAP is a high speed, programmable arithmetic logic module). The PAP executes
the required arithmetic instructions to solve the image processing algorithms.
The PAP is broken down to Arithmetic Elements (AE) with independent hardware
and sharing only control functions. For a block diagram representation of the
PAP refer to Figure 3-27.

1 . Physical Characteristics. The PAP contains 50 IC's for the control
logic, 100 IC's for each AE, and 20 for test for a total of 170 IC's. The

power used is 35 watts.

2. Detailed Description. The major elements of the PAP are its AE's and
the necessary control functions to drive and access them. The major elements
of the AE's are: Cache input memories, scratch pad, ALU, Multiplier, and Skip
Logic. A description of each follows.

Image processing inputs to the AE are provided by the cache memories. The

cache memories are divided into two fully independent memories: cache A and
cache B. Each memory has two sides, between which the incoming data is ping-
ponged. Ping-ponging increases the continuity and hence the speed of data
processing. For example, one side can be used by the PAP while the other side4is being refreshed with new data. The manner in which the ping-ponging is
done can also be fully programmed at the onset of each individual macro. The
present caches have the capability of storing up to 4K x 8 bits of data.

3-64

-S. -...



x -x 0

as am

ON

I-I
0 iv

00

U.C,

L4

4 0
U..

x
X~

4' PV) A
*LL Z cc N0L S IL

j c
3-65;

Ino

~Ed



A scratch pad memory is an additional requirement for the AE. A scratch
pad is a memory used to store the intermediate results of the arithmetic logic
units. The scratch pad has the option to accept data from its ALU accumulator,
multiplier or the control processor. The addresses that the scratch pad will
use are also completely selectable in that the scratch pad can use its inde-
pendent address generator address or its independent cache output data address.

These cache output data addresses are used for making quick histograms where
the processor needs to know the frequency of occurrence vs. the data value.
Additional flexibility is obtained by using a skip flag to enable a write into
the scratch pad. This skip flag increases the capability of the PAP by enabling
it to easily do comparisons and true/false logic. The scratch pad can presently
store 4K x 16 bits each but they may be expanded to 64K words. Some of this
storage may also be used for PROM lookup tables where log, exp, sin, cos,
etc... can be stored.

In addition to the scratch pad, there is also a FIFO which provides the

asynchronous communication from the AE (PAP) to the control processor. The
FIFO stores and transfers data under program control.

The digital processing of the AE is done by the ALU. The ALU performs such
fonctions as: EOR, A or B, A minus B, B minus A, A plus B, hold accumulator,
and preset accumulator. Each operand is independently selectable. The logic

surrounding the ALU permits double precision (32 bit) arithmetic to be performed
under software control.

To further increase the capability of the AE, a TRW multiplier has
been included. The multiplier has the capability of multiplying any one of
nine permutations of operands. The multiplier also has provisions for out-
putting a thirty-two bit product, although normally only sixteen bits would

be used. The selection is under softwere control.

Additional program flexibility has also been gained by adding skip logic.
The skip logic sets a flag if the accumulator content meets the negative,
positive, or zero condition that has been selected. The flag is then used for

conditional writes into the scratch pad. The skip flag may also be used by
the Address Sequencer to execute conditional skip or jumps through the micro-
code.

3 The programming of the PAP is complemented by a twenty-seven bit instruc-
tion word. This instruction word is common to the AE's. This feature allows

simultaneous processing of independent portions of a given frame.

The micro-instruction word for the PAP is separated into fields, the ALU,
Multiplier, Scratch Pad, Skip Logic and FIFO Control Field. Detailed descrip-

tion of the various control fields is given in section 3.2.3.

e. System Interface. The system interface module will control all infor-
mation being passed between the control panel and the AAS system. The 6802
microprocessor will be the major building block of the system interface module. [

0

'-' i i , i •"



The system interface module will consist of all memory and circuitry necessary
for executing control panel commands. A 1553 serial interface will be used
between the system interface module and the control panel. Command informa-
tion passed from the control panel will be interpreted and sent to the AAS
system along an eight-bit bi-directional data bus and a sixteen-bit address
with appropriate bus control signals. In a system type operation, the system
interface module will communicate with the system controller, LSI 11/23. In
a debugging operation, the system interface module will be capable of monitor-
ing parameters and examining microcode within any of the AAS processors, i.e.,
video preprocessor, control processor, system controller, and the high speed
arithmetic processor. A simplified block diagram of the system interface
module is given in Figure 3-28.

3.2.2.6 Graphics Display Controller (B.5). The Graphics Display Controller
(GDC) provides the ability to display target gates and cross hairs with
identification and text data. Also the GDC controls area blanking, reverse
video, reverse graphics, blinking, intensity of graphics output and highlight-
ing of selected video by subduing surrounding video data.

Any type of symbol, character, etc., of any size, in any location within
the area of the monitor may be displayed. See Figure 3-29.

The following example illustrates a Target Designator Gate (TDG) and Bore-
sight Crosshair (BSCH) display generation. The TDG is generated by start of
a line on Row 1, Column 2 and stopping the line when Column 8 is reached.
When rows 2, 3 and 4 are scanned, dots are generated at Columns 2 and 8 thus
displaying vertical lines. At Row 5, Column 2, a line is started, but unlike
the line "drawn" on Row 1, the line is stopped at Column 4 and a text
character is inserted to identify the TDC and again the line is started at

Column 5 and then stopped at Column 8. The BSCH may be generated by a simi- I
lar procedure.

Any number of gates, crosshairs and symbols may be displayed. The only
criteria is that any of graphics must be capable of being described (output
dot, start line, etc.,) in 64 discrete commands/line. Also, the aumber of
calculations made by the Graphics Display Processor is limited to approximately

500 instructions per line.

The Graphics Display Processor is also capable of displaying overlapping
gates as shown in Figure 3-30.

The functional organization of the Graphics Display Process is shown
in Figure 3-31 and is described as follows. The Graphics Display is burst
loaded from the Configuration Control RAM at the leading edge of the vertical
blanking of the display monitor. The data loaded into the RAM contains all
of the parameters to describe the graphics display i.e., position in X Y
coordinates, size in pixel and line counts, type of symbol or character,
intensity, reverse video, reverse graphics, blank video, etc. After com-

9 pletion of the burst load of the Graphics Display RAM the Graphics Display

3-67



71"0

LU

0zw
CA I-.I.

00

LLI LU

LU~~ LuiL. CU

00 0

-J 0 -J:3 U

CI

Zu

z I-
Ir 0

00
NUOD I 4 c

cc >4

CN

co0

0

-

0a

00

U(J

3-68



Cl C2 C3 C4 C5 C6 C7 C8 C9

R 
2

R
3

o = DOT OUTPUT R4
X TRLN DISPLAY

X STARTLINE R5 * SCENE FIELD
= STOPLINE * OR FRAME

* = OUTPUT CHARACTER 6

LINE R7

Re -

03-5-19

FIGURE 3-29. GRAPHICS DISPLAY GENERATION EXAMPLE

6 COMMANDS 0

6 COMMANDS
SCOMMANDS L [
5COMMANDS 00
8COMMANDS 10

B COMMANDS 0COMMANDS
7 COMMANDS V THIS LINE

2 COMMANDS

4 COMMANDS

7 COMMANDS No

6 COMMANDS

K6ICOMMANDS3COMMANDS

04 7 COMMANDS -------- 0

"- 7 COMMANDS 10

3 COMMANDS ON

DISPLAY
SCENE FIELD
OR FRAME 

03620

FIGURE 3-30. GRAPHIC DISPLAY PROCESSOR

3-69



04 
N

~0.
0 0

0 L"

L3 > Lin> w

z a w CL 0L
< c a > 4 < 4 2-j w X c

co ca

zI.

00

U, W

4U I

U, UU

0 JUu zzC

04 >-j4 Za ~ ~ ~ ~ , z- -U > -



Processor (GDP) immediately begins to interpret the display requirements into
commands for line by line control, by the GDP. These commands are in turn
loaded into a 64 word First In First Out (FIFO) memory. Part of the FIFO word
is a 10 bit address describing the column (pixel) count at which the command is
to be executed. From this it can be seen that commands must be loaded into
the FIFO in the sequence in which they are to be executed and that the GDP
tests for the FIFO being full, if full no additional commands are sent. I
FIFO address output compares with the content of the column (pixel) counter
the remainder of the FIFO word is decoded into discrete signals for display
intensity control. Also, this comparison, signals the next sequential word
to be output from the FIFO.

When an output command from the command FIFO, generates the discrete signal
"output character" the character shift register is side loaded with an eight
bit byte that is the translated value of the character FIFO output. When this
shift register is loaded, the next sequential character address output from
the character FIFO is made available to the symbol/character generator prom,
for translation of the next character to be displayed.

The symbol/character generator PROM is an UV eraseable PROM configured
4,096 words by 8 bits wide. This configuration provides the ability to
generate up to 256 different symbols each containing 8 horizontal pixels and
up to a maximum of 16 vertical pixels, i.e., up to 128 pixels/symbol. This
feature allows for the generation of special symbols, as required, in addition
to the full 128 character ASCII set of characters and symbols. The ASCII
character set utilizes a 7 x 9 dot matrix display. The symbol/character
generator PROM receives its address, for the symbol/character and the display
line, of the symbol to be output from the character FIFO memory. The character
FIFO in turn has previously been loaded with the eight bit character/symbol
identifier and the four bit character line to be displayed. Loading of the
character FIFO is accomplished in the same manner as previously described for
the command FIFO, from the Graphics Dispiay Processor.

The Intensity Control receives signals from the command Decode, command
FIFO, the character shift register and Configuration Control RAM to provide
control of the output to the display monitors.

The Graphics Display Controller described above is presently operational
in the FACC Video Signal Processing Simulation Laboratory. This concept I
was chosen for graphics display due to it's flexibility and minimal hardware

requirements.

Features of the Intensity Control provides the ability to configure, from
wthe Graphics Display Processor, the default reset (from horizontal sync) that

occurs at the start of each new line. For example, if it is required to sub-
due most of the video data being displayed and only a small portion of the
display was to be highlighted, to normal intensity, probably each line would
start out with video subdued. In this case a reduced number of commands would
be required for a field of data, requiring only two commands per line of the
video to be displayed at full intensity and no command for each of the full
lines of subdued video. If this provision was not available, one command
would be required for the start of each line plus two commands for each line

3-71

L " . .. .. .



containing full intensity video. This default configuration applies to video
blank, video reverse, graphics reverse and subiue video. Synchronization with
horizontal sync to provide reconfiguration of the default reset on a line by
line basis is provided. Also, the capability is provided to control the level
of intensity to which the video is subdued as well as the brightness of the
graphics.

The Graphics Display Controller has been designed to accommodate any aspect
ratio (4:3, 2:1 etc.) of display as well as any resolution (875 line, 525 line,
etc.) display in either field or interlaced frame mode.

If the Graphics Display Controller is not installed in the system, no
adverse effects are caused to the system other than the inability to display
graphics information.

The Graphics Display Controller (GDC) is capable of controlling graphics
display to a single monitor at a time. Although it is possible to multiplex
control to two display monitors, on an alternate field basis, it is not recom-
mended due to the inherent half frequency blink rate. What is recommended
is a second GDC for systems that require graphics be displayed on two monitors
simultaneously. However, if two display monitors are required to always dis-
play identical-data with identical timing then it is only necessary to use a
single GDC for both displays.

3.2.2.7 Control Panel (B.4). In the AAS system, the control panel will serve
as a controller used for initializing, testing, and executing system algorithms.
The control panel will consist of a 1553 serial interface, and a control pro-
cessor with associated memory. A 6802 microprocessor will serve as the central
processor. A simplified block diagram of the control panel is given in
Figure 3-32. The control panel will be approximately 10 by 8 by 4 inches in
physical dimension. The front panel will contain all displays and controls
used for system operation. Figure 3-33 illustrates the front panel configu-
ration.

The control panel will have two modes of operation, a modular mode and a
system mode. In a system mode of operation, the control panel will supply
the system with the necessary information for performing a selected algorithm.
The system operation display will indicate the present algorithm being executed.
The system operation display will be accessed via the control panel keyboard.
Entries by the keyboard will be directed by the system operation controls if
a change in operation is desired. In a modular mode of operation, the control
panel will be used to perform modular debugging type operations for isolation
of a possible problem. The modules which will be accessed in this mode are;
system controller, control processor, video preprocessor, and the high speed
arithmetic processor. All information will be directed to the monitor display.

"4 The keyboard controls will be used for controlling the monitor display. The left
row of keyboard controls will control the information which will be supplied
by the keyboard. The right row of keyboard controls will indicate the debug
operation to be performed. The following table gives a brief description of
the control panel switches.

3-72

0111



00
<w 4

Z~ WWL

~~z-u
440Z

CL,
Go 0

go

ca~

0o -J) 0

II

5--



LuL

1>1 z

w W Z

~ CA) (fu,

0 w u

z

Ft cc I
-J~

0 L 0

'4 airt 0I
30 EAOTSCEUE .

cc 2



Description of Front Panel Switches

HEADING SWITCH DESCRIPTION

SYSTEM CONTROL Master Reset ; initializes system

Run/Halt ; corresponds to system state

; end of execution of present
function

MEM LD ; loads the system with micro-

(Memory Load) code stored in memory module

SYSTEM OPERATION FUNC ; allows for keyboard entry

CONTROL (Function) of function display, and
Dev, device, display indi-
cates VP, video processor

Mode ; allows for keyboard entry of
mode display, and indication
of DEV display same as above

SEL ; allows for keyboard entry of

(Select) SELECT display

CP ; DEV, device, display indicates
(Control Processor) CP

IP ; DEV, device, display indicates

(Image Processor) IP

RW/HALT, SELF ; These switches indicate the
TEST state of the device displayed

in the DEV display

KEYBOARD ; a hexidecimal keyboard with
a right and left cursor

KEYBOARD CONTROL ENTER ; must be pushed before keyboard
or system operation display

becomes active

DEV enables the DEV, device,

(Device) display to be entered from
system operation control
switches

S3-75

Aw



Description of Front Panel Switches (Contd)

HEADING SWITCH DESCRIPTION

BLK ; enables the BLK block
(Block) display to be entered

by keyboard 71

LOC ; enables the LOCATION
(Location) display to be entered by

keyboard

DATA ; enables the DATA display to
be entered by keyboard

EXAM ; used to examine the location
specified in Address Display

ADV LOC ; increments the location of
(Advance location) Address Display

RESET ; reinitialize system without
destroying parameters, used
main in debugging

Single Cycle ; a debugging aid which

executes a single machine
cycle

Single Step ; a debugging aid which executes

a single clock pulse.

3.2.2.8 Special Test Equipment (B.6). A Memory Loader Fixture is provided for

loading a transportable memory from a Host Processor computer e.g. the DEC PDP
11/70 or VAX 11/780 fixture communicates as shown in Figure 3-34 with the Host
computer over an RS-232 Serial Communications Link as shown in Figure 3-35.
The link is a direct cable connection when the Memory Loader Fixture resides
local to the Host computer. However, the Memory Loader Fixture may also be
located at a remote location by utilization of modems and telecommunications
lines. This feature will allow application code for the AAS to be modified in
field over standard voice or computer grade telephone lines. The RS-232 link
may be selected to run full duplex synchronous or asynchronous at compatible

BAUD rates.

The "Memory Loader Fixture" is microprocessor controlled to provide suffi-
cient intelligence to answer the protocol of the host processor as well as
providing the timing and control for erasing and programming the transportable
memory and communication with the AAS over a serial bus conforming to MIL-STD

1553A. This 1553 Bus provides connection of the Host computer when the system
is used in a laboratory environment or at a local or remote ground station.

3-76



40

NW o0

LU i>

040 I--U

w~
UI I

4 0

U.n

uiU

N=

11 c

I I
ec



0

OW2

M0>

c z uz

0 IL W
0 W WJ

own

cc WW

Wz

3-7



This provision allows study of algorithm software and verification of systems
operation prior to helicopter flight by utilizing the resources of the Host
computer.

The Transportable Memory module allows the loading of programs and parameters
for flight test of acquisition and track algorithms.

This module consists of a non volitile Bubble memory. The "Transportable
Memory" module may be plugged into the Memory Loader Fixture for erasure rad
programming under the direction of the Host computer via the RS-232 serial
bus. The memory module may then be transported and inserted into the AAS
which is designed to provide electrical and mechanical connections.

3.2.2.9 Power Requirements and Parts Count (B.1). The power requirements for
the baseline AAS design are summarized in Table 3-6. It should be noted that
the power listed represents the maximum power required assuming that all the
modules are operational. Power saving features have been incorporated in the
baseline design to reduce the actual power and correspondingly the cooling
requirements. For instance, the baseline design for the Digital Video Pre-
processor includes a feature that allows any preprocessor that is not in use
to be switched on/off within a field time. Since these modules require a
large amount of power, a significant reduction in the actual power required
by the AAS is expected.

The parts count for each subsystem for the AAS is summarized in Section 7.3
titled "Support Technical Data" and is not repeated here.

3.2.2.10 Mechanical Design and Packaging (B.1). The AAS processor will be pack-
aged in two boxes. The circuit boards are 10.0 by 15 inches and in one chassis
with the multiple output switching power supply in another. Weights are listed
in Table 3-7. A remote control panel is cabled into the processor chassis over a

TABLE 3-6. SYSTEM POWER REQUIREMENTS

tage Level Max Current Max Power
ss(Amp) (Watts)

+5.0 90 450
+12.0 

20 240
-5.2 

240

+15 0.5 7.5

-15 0.5 7.5

NOTE:
Presently under reevaluation

3-79

I



TABLE 3-7. WEIGHT BREAKDOWN

Subsystem Weight, lbs

Chas *s and Cables 29.5

Power Suppl' 16.8

System Controller ' 3.2

NEW DESIGN FEATURES MAY
HSDM ALTER THESE VALUES 13.3

Graphics Display Controller 2.8

DVPP 15.3

Frame Memory 8.3

Control Panel 17.3
Total 96.5

10-foot cable. The interface is serial thus minimizing cable size. The two
boxes will be mounted in a shock mounted rack while in the helicopter test
configuration. Refer to Figure 3-36 for a block diagram representation of the
chassis, program memory loader, and control panel interconnect. Installation/
removal from the helicopter of the AAS system should take less than 5 minutes.

Figure 3-37 gives a detailed pictorial representation of the AAS processor
chassis. The box is serviceable from the top with the top also acting as a
card holder to minimize board flexing along the 15-inch length. The chassis
will hold 25 circuit cards leaving space (5 cards) for expansion. The mother-
board will be wire wrapped to allow for flexible interconnects. The mother-
board also has rail supports on the bottom to prevent it from flexing during
card insertion. For external I/0 two 54-pin connectors are mounted on the
rear. Each connector has seven possible coaxial inputs for analog I/O. Air
circulation is from front to back with six 5-inch fans pulling air through
front air filters and over the ICs. To cool the power supply, thus making it
more efficient, a fan mounted in the rear of the power supply chassis will

also draw air from front to back. The volume of the AAS processor is
approximately 5.5 cubic feet.

3-80



EXPANSION CONNECTOR

VIDEO INPUT

-VIDEO OUTPUT

POWER
SUPPLY AAS

VIDEO PROCESSOR

TO LAB
CMPUTE A

PROGRAM

CONTROL MEMORY
PANEL LOADER

FIXTURE
03-5-8

FIGURE 3-36. AAS SYSTEM INTERCONNECT DIAGRAM

8
l 

3-81

,! |
t~



0

PRESENTLY u
BEING -

REDESIGNED o
W -J
I- w

0

cio<

0.-J V

0

.4L

4 
N~- -4 -I - - de

3-8



3.2.3 SYSTEM SOFTWARE DESIGN

The software system proposed for the AAS program closely resembles an

existing and on-going software IR&D program currently under development at

FACC. That software is being developed at FACC using proven top-down

structured programming techniques and a significant portion of it already

satisfies many of the requirements for the basic AAS system. Therefore, a

considerable amount of the knowledge and experience gained from that IR&D

development work will be incorporated into the baseline AAS software design.

The basic software operating system, much of the special support software

and some of the diagnostic software will be a direct outgrowth of that IR&D
p-ogram. The only items of specific software needed for the AAS effort, will

be specially coded software routines that implement the unique requirements of

the algorithms that will be selected for the system demonstration test.

The primary emphasis in the design of the AAS software system will be

placed in four key areas: Speed, Flexibility, Expandability and Maintain-

ability. The system will be fast; it will operate in a near real-time mode.

The software system will be extremely flexible. One will be able to program

and execute a wide class of algorithms by using simple high level language
statements. The system will be expandable to accomodate the inclusion of new

and improved algorithms as they are developed by merely adding low-level

micro-modules to the existing system micro library. Our basic software design
approach utilizes top-down structured programming techniques which ultimately

lead to systems that are easy for the user to modify and maintain.

3.2.3.1 Software Design Summary. The software design is intimately connected

with the hardware configuration, because the system architecture must be

compatible with the simulated algorithms. To ensure the maximum amount of
flexibility, while maintaining the high speed necessary for near real-time

simulation, we have proposed an ingenious concept that involves three levels

of processing for three level programming languages.

The top level is PASCAL, a high level language which allows for a structured

programming approach, ease of modification, and a high order language set of
supporting :ystem calls. The PASCAL p.ogram will run in the DEC LSI 11/23.

The second level will be a user defined assembly language, which runs in the

bit-sliced control processor. This level allows the software to connect the
high order language PASCAL with the microcode in the Pipelined Arithmetic

Processor (PAP). The third level is the microcode executed in the PAP which

gives us the high speed tight loop arithmetic processing.

AFit, functions performed by each is as follows:

'ASCAI, (LSI 11/23)

* Define Task Message Lists

" Define User Parameters

* Control Panel Communication

3-83

It[



Assembly (Control Processor)

" Check Parameters

" Error Check

* Table Memory Assignments

" Pre-binding Parameters

" Post-binding Parameters

* Micro-Sequencer Start and Definitions

" Bulk Data --> Cache Data

" Scratch Pad Parameters

" Post Processing

Micro-Code (PAP)

" Start

* Check Wait/Done

9 "DO Loop" Arithmetic Processing

This method of dividing the software tasks between PASCAL, assembly and

microcode will give the user maximum flexibility in algorithm development

along with the high speed required for realistic simulation.

3.2.3.2 Operating System.

a. Requirements. The software operating system will encompass a system

controller and a control processor. The system controller is a DEC LSI 11/23

and the control processor is a custom high speed processor. The system

controller will execute a high level PASCAL based language which will form task

message packets from a library of algorithm subroutines. These message

packets will be passed to the control processor where the control processor

will operate on the packets and direct algorithm microsequences to be

scheduled and executed in the PAPs. The control processor will perform the

processor dependent functions of allocation of resources, processor loading

Vand interrupt servicing.

Multitasking control in the control processor will be required to keep

the supporting processors scheduled for execution and to insure that the

associated data sets are available when they are needed by the requesting

processor. Pre- and post-processing algorithm support in the control processor

will perform the necessary address binding and data movement for the algorithm
being exEcuted. Message list processing functions will be supported so that

3-84



high level language defined algorithm sequences may be stored as lists in the

control processor and be subsequently executed on demand by specifying only

the list's identifier. This will allow the user to alter algorithm execution

parameters easily at the high level language without the need to create new

assembly code or microcode.

b. Design. The control processor operating system structure will contain

a library of PAP microsequence pointers and their respective pre- and post-

processing support code modules for data setup and post-processing of PAP

results.

The control processor operating system will be required to execute the task

functions associated with individual processors for algorithm queuing and

support. Figure 3-38 depicts the basic operating system design structure.

Basic Tasks Descriptions

(1) The system controller communication task will receive and send

message packets to setup the control processor and provide input

parameter and output display information to the operator through

the control panel.

(2) The algorithm list processor task will provide the sequential

algorithm sequence processing which has been constructed and

commanded by the host processor.

(3) The resource allocator task will perform the housekeeping functions

for memory configuration and PAP instruction and cache memory

transfers. The resource allocator will also be required to

handshake the multitasking transmit/receive dependent algorithm

processes in the queue.

(4) The algorithm pre/execute/post processing task will handle the data

and microsequence setup to execute a routine in the microsequence
library. If the sequence requires execution or post-processing

support for PAP data manipulation, this task will provide the support

required from the control processor microsequence support library

before allowing the next algorithm to be placed into execution.

(5) The video pre-processor support task will be required to setup the

memory and pre-processor algorithms on a video field basis.

Reprocessing or recursive processing of the same or different fields

Ain frame memory will also be supported by this task. Symbol display

(gates, crosshairs, and text) will be setup, processed and directed

to the video pre-processor at the vertical blanking time.

(6) The error log task will be required to save the pertinent informa-

tion about the processors and the algorithms being processed when a

processing error occurs. The task will either continue processing

or abort depending upon the severity of the error and an indication

of the error will be sent to the host processor for operator display

or debugging it necessary.

3-85

r I
!a , , , =



!S

ul1

LA-A

z4
2 Co

w <a
zz

> > cc
w -J 0 9J w
.j cc a w  0

-r w 'c 0 Ix 0

-l 0

Cw,

+ ujao I

UU a ..o [i
ow

U

LL c 011 0 c

0. Ca

o_ z ccF m -E

0~-I I4'-

ej ,=.1

0 o

_- .

I-) 0

-8-> v

cc9

- a.4

0 m

S cc

UUow

,.~



3.2.3.3 High Level Image Processing Language (B.6). Since the AAS system is
used for algorithmic simulation, it is imperative that the system be capable of
accepting a high level language and translating to microcode those statements
which fully exploit the hardware features provided for image processing.

High level language capability has the advantages of easily transforming
algorithms into execution code. In addition, high level language can be
modified and maintained easier. Also developing and debugging programs in a
high level language is much easier and less expensive for the user.

The present trend in programming methodology is toward structured program-
ming and this is primarily due to the following benefits gained by using this
type of approach:

(1) Emphasizes hierarchical approach which leads to easier program
management

(2) Improves program readability and maintainability

(3) Produces code with fewer errors

(4) Reduces documentation time because the programs themselves will
be self-documenting

(5) Increases programmer productivity

In the proposed effort, the structured approach will be emphasized and to
support this, the PASCAL language is offered on the AAS system. PASCAL has
high level control structures that help to keep the flow within each module
linear, and hence, easily traceable.

PASCAL will be used to specify computation and image processing tasks to
the image processing hardware as follows. The image processing complex has a
repertoire of macros which can be invoked by using procedure calls within the
PASCAL program. Thus, if it is required to perform a histogram, the program
segment to perform this may appear as follows:

HISTOGRAM (SA, NB, Ll, L2)

PROCEDURE HISTOGRAM (SA, NB, Ll, L2)
BEGIN

WRITE (IPF, M#, SA, NB, Ll, L2)

END

3
*3-87

!'
-d



The procedure HISTOGRAM outputs to the image processing file (IPF) the
following information: M#, the macro number which identifies the histogram
task in the image processing hardware; SA, the starting address of the image;
NB, number of bins for the histogram; and LI, L2, grey levels that specify
the region of interest.

Whenever IPF receives data through the WRITE statements, the parameters are
transferred to the hardware. We can also monitor the progress and extract
variables from the hardware using statements like:

READ (IPF, OUTI, OUT2,...)

Each macro has a list of input and output variables and when a statement of
the above form is encountered, values for OUTI, OUT2,... are read from the IPF.
However, when the macro is initiated by the procedure call, the latter has to
specify the output variables it requires.

The above example describes the essence of our approach in translating PASCAL
high level code to microcode of the image processing hardware. As can be seen,
with this approach, one has the capability to specify in PASCAL through procedure
calls complex tasks that are to be performed in the hardware. During the con-
tract phase, procedures that implement a representative set of the functions
and algorithms listed in Table I of the RFQ will be developed using specially
designed macros. Additionally, attentions will be paid to procedures that are
useful for debugging and monitoring. These procedures will include display of
memory maps in the image processing hardware.

3.2.3.4 ProgrammingSupport Software.

a. Microprogram Assembler. The microprogramassembler that has been selec-
ted for the AAS program will be the TRANSPORTABLE META assembly (TMA) developed
and distributed by Step Engineering. Some of the features that led to the
selection are:

e Compatible with AMDASM

* Two versions: Intel MDS

ANSI standard Fortran IV

a Available on CDC Timesharing Service

0 Complete cross reference tables

* Easy to use error listings

" Fully supported £

0 PROM or MICROWORD TM output

* o Direct interface to Step-2

4 3-88



TMA is primarily a development aid for designers working on microprogrammed
systems. It permits the user to generate a unique symbolic language which
can then be utilized for program assembly. The TMA is compatible with AMD's
AMDASM program, but comes in two versions. The first is Intel development
system comparible while the second will run on a 16-bit (or larger) mini-
computer with a Fortran Compiler, e.g., DEC PDP 11 and Data General Nova
series computers.

The Meta Assembly Software Package consists of three separate programs as
follows: Definition Program, Assembly Program, and Output Formatter Program.

Definition Prog-am: This program allows the user to define instruction
mnemonics and their associated formats. Instruction lengths may vary from
1 to 128 bits. Symbolic Constants and reserved words may also be defined in
the Definition Program. An instruction format is defined by breaking
the microword into fields and defining the fields as constants, don't care bits,
or variables which are filled in at assembly time. Default values and certain
permanent attributes may also be assigned to variable fields at Definition
time. The Definition Program produces an output listing and a disk file
consisting of the defined symbols and instruction mnemonics. This Definition
file is used by the Assembly program as a reference when assembling a program.

Assembly Program: This program operates like a traditional assembler. A
symbolic source program utilizing the mnemonics and symbols defined in the
Definition Program is read as input, and a listing and object module are
generated as output. The Assembler provides symbolic addressing, relative

addressing, paged addressing, and other features found in typical assembly
programs. The instruction syntax and assembler directives are compatible with
those utilized by AMD in its literature and software products. Additional
directives have been implemented to provide for versatile listing and output
controls.

Conditional assembly statements are provided in both the Definition and
Assembly programs. These statements may be nested up to 16 levels and can be
made dependent on general expression. A full cross reference table is also
provided in both programs.

Some features of the TA are particularly helpful when assembling code for
microprogrammable machines. The existence of don't care bits and instruction
overlaying are included among these features. Bits of a microword which are
not relevant to a particular instruction format may be defined as don't care
bits. Don't care bits are printed as X's on the listing and do not have to be
defined until the Output Formatter program is executed. An instruction format
with don't care bits can be overlayed with other instruction formats. There-

"4 fore when useful, an instruction format can be used to define only part of the
microword, padding out the word with don't care bits.

Output Formatter Program: The program reads the object module file produced
by the Assembly program and translates the format into one that can be read by
a PROM programmer or STEP-2. STEP's MicrowordTM format BPNF and ASCII hexa-
decimal PROM format are supported. Users may specify PROMs of any width and

3-89



length within the object module as well as the value of don't care bits. Any
or all PROMs may be listed and/or punched. To output information to STEP-2
Firmware Integration and Test Station (FITSTM ) the object module is listed in
MicrowordTM format over an RS232 link.

A convenient feature of the TMA is the ease of error correction. Each line
in the listing is assigned a reference line number which is used for editing
purposes. The error listing also refers to the line number, and output
directives permit error messages to be listed following the line referred to,
thus permitting rapid correction of source code.

The Fortran version of the program is available as a card set (approx 6000

cards), as a card image on magnetic tape, or as a diskette for LSI-11 systems.

It requires a computer with:

(1) A Fortran VI compiler

(2) A word length of at least 16 bits

(3) 32k words of Random Access Memory (in most systems these programs
can be run in an overlayed mode if the required memory is not
available)

The Intel development system version comes on either a single or double
density diskette and requires a development system with LSI 11 and 64K Bytes
ROM.

The AAS program will make use of the version on diskette for the LSI-11
system. In addition, code would be developed on FACC in-house Data General
System and VAX 11/780 computer system using the TMA.

b. Macro Instruction Library. The AAS system shall provide the user with
the capability of controlling and specifying image processing tasks to the
hardware complex through the Host Computer. The Host Computer shall be pro-
grammed in a high level language (PASCAL) that has the ability to define image
processing tasks by macro instructions. A limited macro library shall be
provided to make the system operational. The user can change or expand the
macro library according to his needs. The macro library shall consist of the

following four categories:

e Supervisory Macros. These macros allow the Control Processor to
assign tasks to the Video Preprocessor and High Speed Microprocessors.
They enable the Control Processor to communicate information to the
System Controller.

e Data Transfer Macros. These macros are used to control the data
transfers within the system such as transfer of images within the
frame memory or transfer of operands to the Control Processor.

3-90



" General Function Macros. These macros are user oriented and since
the proposed simulator is mainly used in the context of image
processing, vector and matrix operations are good candidates for
implementation. A typical (but not necessarily complete) list of
this type of macros is the following.

VADD (vector add)

VMIL (vector multiply)

INPROD (inner product of two vectors)

OUTPROD (outer product of two vectors)

MATADD (matrix add)

MATMUL (matrix multiply)

SMULV (scaler multiply of vector)

VROT (rotate vector)

VSHIFT (shift vector)

" Algorithm Execution Macros. These macros are primarily application
oriented and pertorm simple to complex algorithms or tasks exploiting

fully the hardware features (such as parallelism and pipelining) and
available memory. A typical list is given in the following.

DEFIMAG (defines images and subimages)

CORREL (correlates two images)

HISTO (finds a histogram of an image)

CONVMASK (defines convolution masks for performing matched
and double gate filtering, edge detection and

image enhancement)

MOMFEAT (evaluates moment features for classification)

* BINARIZE (binarizes an image for a given threshold)

, MEDFILT (performs a median filter on the image)

ROTIMAG (rotates the image)

The number and type of macros to be supplied with the AAS system will be
more completely defined during the development phase.

3-91



The syntax and number of macros to be supplied with the AAS system will
be identified and defined during the development phase on FACC's on-going
internal IR&D program. The illustration of a simple macro follows. This out-
line is for a vector dot product.

(1) The System Controller will invoke a data transfer macro to load
cache 0 and cache 1 of the pipelined Arithmetic Processor (PAP)
with the two vectors.

(2) The Host Processor shall invoke a dot product macro, such as
DOTAB (CO, Cl, N).

(a) DOTAB will identify a microcoded routine that performs the
dot product.

A'B = AI B1 + A2 B2 +---- +A BN

(b) CO and Cl will identify to the microcoded routine that
the vectors are stored in PAP caches 0 and 1.

(c) The N will identify the number of elements in each vector.

(3) The Control Processor will respond to the invoked macro by initiali-
zing the PAP counter one to the value of N, and then execute the
DOTAB microcode routine.

(4) The microcoded routine will leave the resultant product in the
scratch Pad.

An illustration of the micro instruction word and the microcoded example
routine DOTAB is provided in Figure 3-39.

c. Diagnostic Software. The AAS system will provide for three levels of
diagnostic testing. The lowest level of testing shall utilize the Built-in
Test Equipment (BITE) feature of the AAS system. The next level of testing
shall be a functional subunit test. The highest level of test shall be a
system go/no go system test. Upon operator activation of a system test key
on the control panel, the AAS system shall automatically perform all three
levels of testing.

The first test performed by the AAS system software shall be the activation
of the BITE feature in the following modules:

e Micro Sequencer

* Address Generator

* Bulk Memory

* Pipelined Arithmetic Processor

3-92



Z -j cc e c-)
0 U -CJ9
o - 4 N I

2U La U) a 2 a0

L S C to * 4 0...i-2
IL -J ww U. q

Cc U U. 4 04 CCz

os~o U) 4 UziI

0 0 AM 0

Zs 2 2 m maw
w o w ww w 0 0m W I 40

m w ww ccm m zw c - LAI
N '~OO.

A.w w AMMMAA 0~ N
AM u- 0 aNNN I a I * U-C0

AD D 0 w w w-lA A .A

w a. - DO

W w 

-J-

co

I.T 31033IM A0

L a ci W0±Nl WI3.5

0 v Nr, I C4VN u±W 1313 NOIGN

cc - 0 .33MINOIIIGNOD W

AM CIV) 2 Z

4 1 1 0

1V Ui cc U

9- *X 3± OV3H

ui a. ±uj vv
x ~ -n i

o N .~)f~5 S3&~OV>AM _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
n inN A - N

-~ I-~i ±n±n

IL Z
4 lndNIX a

AM cc~ld I

N 0U

0

3 NOISUX3 Nfl 3NIW

-3-9



1

INE ADDR" AGSE,'L Fk i.:')i F)'DDUC T PAGE

P.ATE ]- 13 ,;

TI ME 1 3 ,

1 .0000 11 1 LE MV!:'- AS..MLrSL DET PRODUCT

3 00000

4 00000 DOTP D .R
5 00000
S00000

00000 F 4FPCISPACE AN!, COMMUNICATIONS CORPORATION
8 00000 AERUNUTRONICS DIVISION
9 00000 M-'IPS PROJECT

1 0 00000
I 1 00000
12 00000 S-'AO P t A 1 - BI( A2 * 2)
[ :3 0000014 00000 THIS ROUTI!,L-. CAL(.UAT[S THE DOT PRODUCT OF: TWO

15 00000 VECTORS CON 'AINING 'HREE ELEMENTS EACH AND STORES THE
16 00000 RESULT IN THE S'iRATCH PAD (E.P) IT ASSUMES CACHE 0
17 00000 (.ONTAINS VECTOR A -"ND CACHE I CONTAINS ET,'FOP 2 IN
18 00000 'IE FOLLOWING ORDE"
19 00000
20 00000 CH(: CHI
-' 00000 0 AO 0 B0

00000 1" 1i1 ;i
23 00000 2: e% 2 : t iQ
24 00000

5 00000 .CO IS USEi.., AS A POINTER INO 0 1H E CACHES AND AGI IS USEL
26 00000 AS A POINTi. 1N0 T-F SP PGJ ], 3ET TO I THRU ,lr THE
. 7 10000 LNT IRE ROI.. :ME
29 0000 THE ROUT lN- I 5 ,..E :,;r. FOR AN INr 1NI TE LOOP
29 , 00000
"10 <00000
3L 00000 HIUDULE I D 4.
"2 00000
33 00000 M L 1 N ILE ',tN
?4 00000 04 -2Y

35 00000 r.IODIFIFD 1; M L ,."t-LiLLSON 1-1J-81
36 00000
:38 00000
39 00000 t. I .,l B,,

40 00000 NJI JST L
41 00000
42 00000
43 00000
44 00000 IHIS IS THE. BEGINING OF THE LOOP
45 00000 CACHE P,-INTEi-' Ar:.C, SET TO ZERO FOP
46 '0000 THE FIR'I.F EL.rErNT PAIR (AG, BO;
47 (.0000
4F' 0000 A0 A . . AL) C) AGO
49 (:0000 & HLDI AGI HOLD
V.0 , 0000 /, RA.RS "IH*.3. 4H#O, 4H#0. 4H#0' DATA IS 0
"I 000 / ' NVF YL NO VFM WRITE
5;2 O '.D0 0 ''. NC(-1E PAP: NO CARRY EXI.

- ( ',_1000, i-L [,F L D ACCUM

c% t:(000 4 Hi-t 1;r l4 . Mf NUt.T

NOTE: THIS IS THE LATEST LISTING -j

3-94

. ... .... 7
. . .. . I I I I II I II I I : : -Ill~llll l-ll Jil IllCllA



- ' ThOK(, r'.i HULA) SP
- , "; ._,t 7." ". I C Er1 NT

*~~r ENT)l .

'." )00c
' )000 1

' ;000 I ' H!t:

.;; ': ' H i .
.0 VFII vP .TE

-C? '(,,, V

A( '(NOC, :

.6

-2 (0 .:, ! r" .ILE . -° .T :, '~ . -~ l, o .O~

P". I..: . *I~t. .*-r D7 $ ATA 1S 1

00 UO' - N . ¢:F.

u'. O0 u,- If ". N pr ..fr .r,
- ' . (), YJO 0 0 0 0 ._ ... r,-. ' " , : .i i~ .D .

L 7 00003
P9 00003 Hi t
:9' 00003 ' -' i ,'[r .. '-t ,

0000 , N L NOF ',F WR I-
Q j 00003 N I AP I ARR' E>:I

"2 00003 ' H . HOLD ACCUMULATOhi
93 00003 !8 HL';M SELECT LSP
c4 00003 'F R[;'.F. HOLD SP
95 00003 ... M- MS. INCPEMENT
96 00004
97 00004
98 00004 ,CACHE PO-INI- AGO=..) OR LAST FAIR (A2? E2n
99 00004 51-*"l SUM = A0 B N; - MULTI FL D 1 .
*00 00004 STL RE FIRST RUNN N 3M IN 'IP I

!01 00004
02 0"004 fN 1. A -0 .G , A 0 Ai-' - 1 ADO
t03 00004 /& HL. I A,, I bIUL
104 00004 /7, NQFYL. NO VFM WRITE
l05 00004 WRE CF'AP IC CARRY EXT

j 10- 0004 ?, Hl ['A HOLD ACCUMULA1 :P
107 )004 e L ; ' li A --. M

S '0004 '. , Wf-P ".f" M 3P -- SP( )

II 3-95

I'U
- -N J



LINE ADDR ,V jPS AGSEM i . r R ODUCl PAGE 3

DATE 1-13 ,:1
TIME 15 13 "(

i09 00004 ;,. . m. 1N.i EMENf
110 00005 ,
I1 00005
112 00005 . D FIRST 6. f JiG SF LAtTlH
1 13 00005

14 0()0005 " .. D E- AGSO HOLD

115 00005 /. hi.D AO HOLD
I 16 G'0005 N t10 NO VFM WRITE

117 00005 NCRL P AP. NO CARRY EX 1.
118 H00L5 D AL , HOLD
u19 O00u5 HL.D,' HOLD MULT & SELEfT LF" '

120 00005 /', RDS3 F READ SP INTO LATCH
121 00005 , jr..P MS. INCREMENT
.L_2_ O000,

12.3 00006
124 00006 5UI1UM C (A' Al I 1 AND MULTIPLY (A2 * 32)
125 00006 A
1 -6 00006 HLD. ACO HOLD
1 27 00006,, HL" 1 , Al" HOLD
128 00006 ." NVYL NO VFM WRITE
129 00006 ,;',NCHR 'PAP NO CARRY EXT.

0 00006 ', A L) MA I-.P) M + SP(1) - : AC
131 00006 /& LDX, 0' CI y B2 * A2 -M M
132 00006 ,. REP HOLD SP
133 00006 i 3M MS INCREMENT
134 00007
1,35 00007
13e., 0000i OR 1-E SE _OI, RLU NN jN. i U 11 1N S : (
137 00007
t -13 00007 e7 HL AGO HD L.D
139 00007 , HL L AOl HOLE)
1,1C 00007 ,". NV: Y NO VFM WRTIE
141 00007 , N -' PAP NO Ci, RRY EXI
t 42 00007 ,". HL HOLD AC.CUM.
143 0000 ; ,L :. HOLD MULT
144 00007 ,, WP. , AC ---> SP( I
145 00007 . MS INCREMENT
1 4 .. 0 0 0 0 8

147 00008
14B 00008 KLILECT LSP - RT- PRODUC , I. READ SECOND SUM
149 00008 ,'() INTO LAIC-
150 00008
151 00008 .' HL L,' AgO HOLD
[52 00008 ,;& HLDI A) 1 HOLD
153 00008 1?, N'F Y! NO VFM WRITE

w 154 00008 ,. N(, PAP NO CARRY EXT
155 00008 /& HI.DA HOLD ACCUM.
156 00008,'" HLDM SELECT LSP
157 00008 , RE)OP ,-i [D'F READ SP INIO LATCH
t58 00008 /, 3M' • MS INCREMENI
t19 00009
160 00009
',, 1 00009 3011 1 ,M ' A- L'

t oX 00009

I

-9 39



LINE ADDR NVJPS ASSEM'.._:ER RODUCT PAGE

D A ! E I -- I i_ I.

TIME 15 13 '"(

16,3 00009 t,9. HI. t, AGO: HOLD
164 00009 i? HI AOI: HOLD
165 00009 /& N- L. NO VFM WRITE
166 00009 /. NC ?APF NO CARRY EXT
167 00009 /, AM. ri -Nit M + SP1 -' AC
16. 00009 ,"1. HI. i, HOL.D MUL.T.
169 00009 ,', R HOLD SP
170 00009 , ,J" ,MS" INCREMENT
171 OOOOA
1 72 OOOOA
173 OOO A " - T(IRE FINAl_ UNNIN Gr)I, I N SP (1
174 O000A
175 OOOOA A J H.[ ; AGO: HOLD
176 OOOOA /H. HL.DI ;AGl HOLD
177 OOA , N)F[-L. ;NO VFM WRITE
178 O000A , NCRE PAP: NO CARRY EXT
179 OOOOA /.: HLDA , HOLD ACCUM.
180 O0004 " HL DM H HOLD MULT.
181 O000A i WRSP ;,D(. AC -'> SP(1)
182 O000 ," .. Jrip MS. INCREMENT
183 O000B
194 000023
185 O000B ;00 BACK TO IEGINNG! OF LOOP
186 O000
187 O000B A I HL.DU AGO: HOLD
188 O0002 ' HL k- AGl Hr LD
189 0000B /y NVl-YL NO VFM WRITE
1?0 000B NCPE PAP NO C;RR,y EXT.
1QI O000 ' HL IA HOLD ACCUM.

D 0002 HLIM HOLD MULT.
IQ3 00002 RDP HOLD -4 P
1i 4 O000B /F J,' FwF:. MS JUMP BACK 11
1( 5 O000C INSTRUC. IONS

TOTAL ASSErIL. 'RRORS 0

.4

3-97

i
•

.. 
t
' J ' ' q

.. _



t1 IiJEC T pMcub,

C00i2)0 0001o It OII )xI 11300 1 1 x1 Y X 1 x 10 00001XOOj
0001O 1X010011 101100K~lC 0, C',
;)GOOO 1 X0 1 10 1 X~ I .XC'00 OuOOC0 I )e (Y 'o

00002D 11101011OX0001 31 '1 -00O000 Y ~x X 10 OOOOOolxoooooI1
p0002~i xo100j I I.OXXXOOCo "10 . 000c)

000-)3 X01 0011 IO ox xQO &-0c C)0 -
1000 1 10 10 11 IDt i :C, ilIlI. )'4XX K )A-X X XYX 1 0000000 1X 00000o1

- i004 X0OI1111lOX0X0000 .',0 '.'< 00000
1]'-)0')5 1 r)1 1001 1 1O QC X I~ CXX 1 , xx XX XP. X 1 C OC)) 0001x.l)0000Q,
of_)'-5 X01 011 1 ,)XXUOoO 0n0 u00

* i!(O;k. 1I0' 1l Y 1. Cii lIi -D1( 1 1 >y 'y ( Y yy )X A.X~ X Xx ID 1 11000 1X 0,000 11
0 C 06 XU 10 01 L 10X X .&0 00 )d. 000 i
00007 101 c', I I I 1 X X'K x 'XX iX X y 1,- ' 000000 1 -Y0000 1.

)Q l xj01 L I I 11 XY ()O ) .0 -'0000 1
>C 1I 1.,)ci 1X I . 1111 AXX.; X X XX X.X XX I xC 0000000140000000

f) 0 09B c X101 1 1t0OXxX0O000 I,0'ic )00
jOq 101100111Xicl00o 'illYO 'lxxx 'XX~X~xx~Xxx~xlo10 1OlOOlX00000lc1

o000'J, X 01001110lXXX0000 0200 ".' uBC)0001
i A0QA 10 1100 11 1 x10 1100 iI I117, x, xYYxXx XX',XXXXXXXXXXXX10 00000001IX0000010)
0000A X0t liiloxxx000 C,00 0 r-)~ C,,, d:oo oolI
0000B 101100111~k01i00oc 1111"-. , Xxxxx xXXxXxxi 00000001IX00001;,

r() C)f X1 f0 1 1 iu)x X0 0 0 1(Q00: , I 101 10

HEX LISTING

'4,~~~~ F CQ,00 .~ :, 2 00

0 .J ')Q 1 C1') -2
- ! U 0,. '010 2 3Ff- C C

~ F U'" 000 C)I C;.~ F C: FF

3-98



Upon completion of the BITE, the diagnostic software shall report any

failures found hY the test equipment to the operator.

The next test performed by the AAS system software shall be the functional
subunit test. The functional subunit test shall consist of individual self

,ests for the following subunits:

" Control Panel (6802) CPU test

" Program Transport Module (6802) CPU test

* Sy'ste'm Interface (6802) CPU test

* 1553 Data Bus Data Transfer Verification

e Svstem Control l,.r Self Test

" Control Processor Self Test

" Microsequencer Self Test

* Address Generator Self Test

" Pipelined Arithmetic Processor Self Test

" Bulk Memory Self Test

" Video Preprocessor Self Test

The diagnostic self tests shall report a failure of its respective subunit

for operator notification.

The final test performed by the diagnostic software shall be a system level

scenario test. This test shall consist of processing a predetermined scene,

and comparing selected processing outputs with expected outputs. Any discre-
pancy between the processed and the expected outputs resulting from the scene

shall be treated as a system no-go condition. The amount of processing
performed shall be minimal and intended to exercise all system units in an

operational manner.

4

3-99



3.3 INTEGRATED MEMORY PROCESSOR (Option)

"3.3.1 INTRODUCTION AND SUMMARY

The Integrated Memory Processor (IMP) developed for the Autonomous

Acquisition Simulator will utilize the design architecture of existing

hardware developed specifically for d i ,ital image processing applications.

Its design is based on usin dediCated ha rdware to implement general con-

voltittonal algorithms needed in image processing applications. Its applica-

tion will enhance the processing capabilities of the AAS System by expanding

it to include applications of near realtime image rotations, translations,

minufication, magnification, and variable user define filters. The following

information presents the design characteristics of the IMP and describes

areas which will require upr,ading tor the AAS application.

3.3.2 FUNCTI ONAL DESCRI PTIiON

The functional capability of the Integrated Memory Processor developed for
the AAS System will include the current image processing capabilities of
performning functions ranging,, from image rotation, scaling, translations,
minification, magnification, and warping using either Bilinear or Cubic

Spline interpolation. It will also include the current capability to per-
forming user defined convolutional filters ranging from a 2 x2 matrix up to
a 15xl matrix. All of which are performed under near realtime conditions
utilixng direct memory access of display frame buffers. These capabilities
ckirrentlyv exist for applications to displays of 512 by 512 pixel- but will be
modi led to accommodate expansions for applications of 1024 by 1024 pixels.

Figure 3-40 illustrates the functional components of the Integrated Memory

Proces sor hardware.

.3. SYSTEM C~ONFI(;UIRATION

Th1e IMl' will be confi.ured within the realtiine environment of the AAS
data flow and will require access to two frame buffer memories when employed.

Figure 3-41 ill ust rates how the IMP will be iinpl emented for the AAS System.

The design of the IM' will Ie divided into five modular components. Each

will perform a major finection of the IMP's efforts. This division will give
the implementation of the IMP a unique modular structure which will allow
simplification of failure analysis and system expansion.

3.3.4 PERFORMANCE

The IMP for the AAS System will be designed from the current near realtime

image processing application. This system is currently capable of performing

functions of rotation, scaling, translation, magnification, minification and
non-recursive filters well within specifications required for AAS. The

following paragraph defines the performance characteristics currently avail-

able and the expansion required for the AAS System.

3-100

A* __ ........7



I .m.. sfolo 1 INOD ,,,),sne -o LNOD
I~ UOd-IlinwIU~ 1 im~l~

00

I-L

uii

N Im

- L W-c

LU 0

zz

0 u0

LL LU

U. t

0.-



0

zz

0 u0

0

z 0
9M

L)o 2M
0§ 4(0~M4U cc >..J L Uf

cc-10E



3.3.4.1 Functional Applications. The AAS IMP will employ existing hardware
architecture to implement the following functions:

CURRENT AAS
FUNCTION CAPABILITY EXPANSION

Rotation 0 to + 1800 in 1024 increments Same

Translation 0 to + 512 pixels in increments Expand to 1024
of 1/16 pixel Pixels

Minification/ 1/16 to 16 in increments of Same
Magnification 1/16

Interpolation Bilinear and Cubic Spline Same

Special Warping Same
Transformations

Filter Non-Recursive Convolutional Non-Recursive Con-
(2x2 to 15x15) volutional (2x2 to

64x64)

Bilinear or Cubic Spline interpolation will be applicable to any first
order functions (i.e., rotation, translation, magnification and minification)
as specified by the AAS System Controller.

3.3.4.2 Hardware. The hardware implementation of the Integrated Memory

Processor will incorporate existing operational hardware which utilizes the
most advanced state-of-the-art LSI and MSI digital integrated circuitry.
Schotty TTL bipolar logic will be used in most situations. Principal
multiplying functions will be implemented with high speed LSI multipliers
MPY-16HJ and MPY-1211J types available from TRW with off-the-shelf avail-
ability of 150 nanoseconds and 110 nanoseconds respectively. It's process
control logic will be implemented with the most recent control oriented
processing architecture using 2900 family logic to provide the most flexible
integration of hardware and software possible.

3.3.4.3 Software Requirements. The IMP will be provided complete with
operational firmware but will require functional software interfacing. This
will, however, be limited to functional commands to the IMP, coefficient
data required for implementing filters, and first or second order processor
coefficients.

3-103



3.3.5 INTERFACES

The IMP will require interface communication links to the configuration
Controller and to 2 frame buffer memories via the Multiport Memory Interface
Control.

The interface to the configuration Controller will consist of communication
of all functional commands, first and second order coefficients, configuration
commands, filter dimensions, and filter coefficients.

The Multiport Memory Interface Controller interface will be responsible for
direct memory access to display data for the IMP. This interface will consist
of two (2) 20 bit address links in which the IMP will pass address information
to the designated working store frame buffer over one bus, and response
addresses over the other. It will also consist of two (2) 32 bit data inter-
face links one for accessing display data from the working store buffer and
one to pass response data to the response buffer.

Each access to the working store buffer will request 8 consecutive pixels
each. These 8 pixels are considered a display vector and are stored within
the Active Pixel Memory of the IMP Cache. This also compliments the IMPs
Cache application by minimizing external request which slow down the total IMP
processing cycle.

3.3.6 PHYSICAL CHARACTERISTICS

The Integrated Memory Processor will require three AAS System Chassis card
slots. The distribution of power for each functional unit is estimated below:

POWER *
FUNCTIONAL UNIT PER UNIT

(1) CPU Interface/Processor Control 20 Watts

(2) Source Pixel Coordinate Processor 40 Watts

(3) Neighboring Pixel Coordinate 30 Watts
Processor and Coefficient Table
Look-Up

(4) Cache 40 Watts

(5) Arithmetic Element 20 Watts

"4 TOTAL 150 Watts

*All estimates are based of Vcc = +5.0 Vdc.

3-104

.. . .I l I I I III II • I I I • i -



DATE.,

FILMER


